Skip to main content
Log in

Upgrading pyrolytic carbon-blacks (CBp) from end-of-life tires: Characteristics and modification methodologies

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Over 1 billion end-of-life tires (ELTs) are generating annually, and 4 billion ELTs are currently abandoned in landfills and stockpiles worldwide, according to the statistics, leading to the environmental and health risks. To circumvent these issues, pyrolysis, as an attractive thermochemical process, has been addressed to tackle the ELTs’ problem to reduce the risks as well as increase the material recycling. However, due to the lack of systematic characteristic analysis and modification methods, poor quality of CBp limits the improvement of ELTs pyrolysis in industry applications, which plays a crucial role in the economic feasibility of pyrolysis process. In this review, we have summarized the state-of-the-art characteristics and modification methodologies of the upgrading of CBp, to in-depth understand the surface microstructures and physiochemical properties of CBp for the foundation for modification afterwards. By virtue of the proper selection of modification methods and modifying agents, the new generation of multifunctional carbon materials with desired properties can be instead of the traditional materials of CB, promising broader and various application fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguado J, Serrano D P, Escola J M (2008). Fuels from waste plastics by thermal and catalytic processes: A review. Industrial & Engineering Chemistry Research, 47(21): 7982–7992

    Article  CAS  Google Scholar 

  • Aguado R, Olazar M, Vélez D, Arabiourrutia M, Bilbao J (2005). Kinetics of scrap tyre pyrolysis under fast heating conditions. Journal of Analytical and Applied Pyrolysis, 73(2): 290–298

    Article  CAS  Google Scholar 

  • Akovali G, Ulkem I (1999). Some performance characteristics of plasma surface modified carbon black in the (SBR) matrix. Polymer, 40(26): 7417–7422

    Article  CAS  Google Scholar 

  • Alexandre-Franco M, Fernández-González C, Alfaro-Domínguez M, Palacios Latasa J M, Gómez-Serrano V (2010). Devulcanization and demineralization of used tire rubber by thermal chemical methods: a study by x-ray diffraction. Energy & Fuels, 24(6): 3401–3409

    Article  CAS  Google Scholar 

  • Antoniou N, Zabaniotou A (2018). Re-designing a viable ELTs depolymerization in circular economy: Pyrolysis prototype demonstration at TRL 7, with energy optimization and carbonaceous materials production. Journal of Cleaner Production, 174: 74–86

    Article  CAS  Google Scholar 

  • Ariyadejwanich P, Tanthapanichakoon W, Nakagawa K, Mukai S R, Tamon H (2003). Preparation and characterization of mesoporous activated carbon from waste tires. Carbon, 41(1): 157–164

    Article  CAS  Google Scholar 

  • Association ETRMA (2015). End-of-life Tyre Report 2015. 2015 Edition

  • Atal A, Levendis Y A (1995). Comparison of the combustion behaviour of pulverized waste tyres and coal. Fuel, 74(11): 1570–1581

    Article  CAS  Google Scholar 

  • Atif M, Bongiovanni R, Giorcelli M, Celasco E, Tagliaferro A (2013). Modification and characterization of carbon black with mercaptopropyltrimethoxysilane. Applied Surface Science, 286: 142–148

    Article  CAS  Google Scholar 

  • Aylón E, Fernández-Colino A, Navarro M V, Murillo R, García T, Mastral A M (2008). Waste tire pyrolysis: comparison between fixed bed reactor and moving bed reactor. Industrial & Engineering Chemistry Research, 47(12): 4029–4033

    Article  CAS  Google Scholar 

  • Bae J, Jang J, Yoon S-H (2002). Cure behavior of the liquid-crystalline epoxy/carbon nanotube system and the effect of surface treatment of carbon fillers on cure reaction. Macromolecular Chemistry and Physics, 203(15): 2196–2204

    Article  CAS  Google Scholar 

  • Banar M, Ozkan A, Akyildiz V, Cokaygil Z, Onay O (2015). Evaluation of solid product obtained from tire-derived fuel (TDF) pyrolysis as carbon black. Journal of Material Cycles and Waste Management, 17(1): 125–134

    Article  CAS  Google Scholar 

  • Bandyopadhyay S, De P P, Tripathy D K, De S K (1996). Influence of surface oxidation of carbon black on its interaction with nitrite rubbers. Polymer, 37(2): 353–357

    Article  CAS  Google Scholar 

  • Belmont J A, Amici R M, Galloway C P (1998). Reaction of carbon black with diazonium salts, resultant carbon black products and their uses. Google Patents

  • Belmont J A, Amici R M, Galloway C P (1999). Reaction of carbon black with diazonium salts, resultant carbon black products and their uses. Google Patents

  • Belmont J A, Amici R M, Galloway C P (2000). Reaction of carbon black with diazonium salts, resultant carbon black products and their uses. Google Patents

  • Belmont J A, Amici R M, Galloway C P (2002). Reaction of carbon black with diazonium salts, resultant carbon black products and their uses. Google Patents

  • Belmont J A, Amici R M, Galloway C P (2004). Reaction of carbon black with diazonium salts, resultant carbon black products and their uses. Google Patents

  • Benallal B, Roy C, Pakdel H, Chabot S, Poirier M J F (1995). Characterization of pyrolytic light naphtha from vacuum pyrolysis of used tyres comparison with petroleum naphtha. Fuel, 74(11): 1589–1594

    Article  CAS  Google Scholar 

  • Bernardo M, Lapa N, Gonçalves M, Mendes B, Pinto F (2012). Study of the organic extraction and acidic leaching of chars obtained in the pyrolysis of plastics, tire rubber and forestry biomass wastes. Procedia Engineering, 42: 1739–1746

    Article  CAS  Google Scholar 

  • Boota M, Paranthaman M P, Naskar A K, Li Y, Akato K, Gogotsi Y (2015). Waste tire derived carbon-polymer composite paper as pseudocapacitive electrode with long cycle life. ChemSusChem, 8(21): 3576–3581

    Article  CAS  Google Scholar 

  • Brazier D W, Schwartz N V (1978). The effect of heating rate on the thermal degradation of polybutadiene. Journal of Applied Polymer Science, 22(1): 113–124

    Article  CAS  Google Scholar 

  • Cardona N, Campuzano F, Betancur M, Jaramillo L, Martínez J D (2018). Possibilities of carbon black recovery from waste tyre pyrolysis to be used as additive in rubber goods: A review. IOP Conference Series: Materials Science and Engineering, 437: 012012

    Article  Google Scholar 

  • Cataldo F (1999). Carbon black nitration and nitrosation and its application to improve the mechanical hysteresis of a rubber tread compound. Die Angewandte Makromolekulare Chemie, 270(1): 81–86

    Article  CAS  Google Scholar 

  • Chen W, Feng H, Shen D, Jia Y, Li N, Ying X, Chen T, Zhou Y, Guo J, Zhou M (2018). Carbon materials derived from waste tires as high-performance anodes in microbial fuel cells. Science of the Total Environment, 618: 804–809

    Article  CAS  Google Scholar 

  • Cheng X, Song P, Zhao X, Peng Z, Wang S (2018). Liquefaction of ground tire rubber at low temperature. Waste Management (New York, N.Y.), 71: 301–310

    Article  Google Scholar 

  • Conesa J A, Font R, Marcilla A (1997). Mass spectrometry validation of a kinetic model for the thermal decomposition of tyre wastes. Journal of Analytical and Applied Pyrolysis, 43(1): 83–96

    Article  CAS  Google Scholar 

  • Cunliffe A M, Williams P T (1998). Composition of oils derived from the batch pyrolysis of tyres. Journal of Analytical and Applied Pyrolysis, 44(2): 131–152

    Article  CAS  Google Scholar 

  • Cunliffe A M, Williams P T (1999). Influence of process conditions on the rate of activation of chars derived from pyrolysis of used tires. Energy & Fuels, 13(1): 166–175

    Article  CAS  Google Scholar 

  • Martínez J D, Puy N, Murillo R, García T, Navarro M V, Mastral A M. (2013). Waste tyre pyrolysis: A review. Renewable & Sustainable Energy Reviews, 23: 179–213

    Article  CAS  Google Scholar 

  • Danmaliki G I, Saleh T A (2016). Influence of conversion parameters of waste tires to activated carbon on adsorption of dibenzothiophene from model fuels. Journal of Cleaner Production, 117: 50–55

    Article  CAS  Google Scholar 

  • Díez C, Martínez O, Calvo L F, Cara J, Morán A (2004). Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered. Waste Management (New York, N.Y.), 24(5): 463–469

    Article  CAS  Google Scholar 

  • Ding W B, Wang L, Yang Q, Xiang W D, Gao J M, Amer W A (2013). Recent research progress on polymer grafted carbon black and its novel applications. International Polymer Processing, 28(2): 132–142

    Article  CAS  Google Scholar 

  • Fairburn J A, Behie L A, Svrcek W Y (1990). Ultrapyrolysis of n-hexadecane in a novel micro-reactor. Fuel, 69(12): 1537–1545

    Article  CAS  Google Scholar 

  • Galvagno S, Casu S, Casabianca T, Calabrese A, Cornacchia G (2002). Pyrolysis process for the treatment of scrap tyres: preliminary experimental results. Waste Management (New York, N.Y.), 22(8): 917–923

    Article  CAS  Google Scholar 

  • González J F, Encinar J M, Canito J L, RodríGuez J J (2001). Pyrolysis of automobile tyre waste. Influence of operating variables and kinetics study. Journal of Analytical and Applied Pyrolysis, 58–59: 667–683

    Article  Google Scholar 

  • Gupta V K, Gupta B, Rastogi A, Agarwal S, Nayak A (2011a). A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113. Journal of Hazardous Materials, 186(1): 891–901

    Article  CAS  Google Scholar 

  • Gupta V K, Gupta B, Rastogi A, Agarwal S, Nayak A (2011b). Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Research, 45(13): 4047–4055

    Article  CAS  Google Scholar 

  • Helleur R, Popovic N, Ikura M, Stanciulescu M, Liu D (2001). Characterization and potential applications of pyrolytic char from ablative pyrolysis of used tires. Journal of Analytical and Applied Pyrolysis, 58–59: 813–824

    Article  Google Scholar 

  • Iraola-Arregui I, Van Der Gryp P, Görgens J F (2018). A review on the demineralisation of pre- and post-pyrolysis biomass and tyre wastes. Waste Management (New York, N.Y.), 79: 667–688

    Article  CAS  Google Scholar 

  • Jia L C, Li Y K, Yan D X (2017). Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon, 121: 267–273

    Article  CAS  Google Scholar 

  • Karmacharya M S, Gupta V K, Tyagi I, Agarwal S, Jha V K (2016). Removal of As(III) and As(V) using rubber tire derived activated carbon modified with alumina composite. Journal of Molecular Liquids, 216: 836–844

    Article  CAS  Google Scholar 

  • Kordoghli S, Khiari B, Paraschiv M, Zagrouba F, Tazerout M (2017). Impact of different catalysis supported by oyster shells on the pyrolysis of tyre wastes in a single and a double fixed bed reactor. Waste Management, 67: 288–297

    Article  CAS  Google Scholar 

  • Kumar R, Ansari M O, Barakat M A (2013). DBSA doped polyaniline/multi-walled carbon nanotubes composite for high efficiency removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 228: 748–755

    Article  CAS  Google Scholar 

  • Kyari M, Cunliffe A, Williams P T (2005). Characterization of oils, gases, and char in relation to the pyrolysis of different brands of scrap automotive tires. Energy & Fuels, 19(3): 1165–1173

    Article  CAS  Google Scholar 

  • Lee W H, Kim J Y, Ko Y K, Reucroft P J, Zondlo J W (1999). Surface analysis of carbon black waste materials from tire residues. Applied Surface Science, 141(1): 107–113

    Article  CAS  Google Scholar 

  • Li Q, Li F, Meng A, Tan Z, Zhang Y (2018). Thermolysis of scrap tire and rubber in sub/super-critical water. Waste Management (New York, N.Y.), 71: 311–319

    Article  CAS  Google Scholar 

  • Li S, Wan C, Wang S, Zhang Y (2016). Separation of core-shell structured carbon black nanoparticles from waste tires by light pyrolysis. Composites Science and Technology, 135: 13–20

    Article  CAS  Google Scholar 

  • Li S, Wan C, Wu X, Wang S (2016b). Core-shell structured carbon nanoparticles derived from light pyrolysis of waste tires. Polymer Degradation & Stability, 129: 192–198

    Article  CAS  Google Scholar 

  • Li S Q, Yao Q, Chi Y, Yan J H, Cen K F (2004). Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Industrial & Engineering Chemistry Research, 43(17): 5133–5145

    Article  CAS  Google Scholar 

  • Li W, Xie Z, Li Z (2001). Synthesis, characterization of polyacrylate-g-carbon black and its application to soap-free waterborne coating. Journal of Applied Polymer Science, 81(5): 1100–1106

    Article  CAS  Google Scholar 

  • López F A, Centeno T A, Alguacil F J, Lobato B (2011). Distillation of granulated scrap tires in a pilot plant. Journal of Hazardous Materials, 190(1–3): 285–292

    Article  CAS  Google Scholar 

  • López F A, Centeno T A, Rodríguez O, Alguacil E J (2013). Preparation and characterization of activated carbon from the char produced in the thermolysis of granulated scrap tyres. J Air Waste Manag Assoc, 63(5): 534–544

    Article  CAS  Google Scholar 

  • Lopez G, Olazar M, Amutio M, Aguado R, Bilbao J (2009). Influence of tire formulation on the products of continuous pyrolysis in a conical spouted bed reactor. Energy & Fuels, 23(11): 5423–5431

    Article  CAS  Google Scholar 

  • Manna A K, De P P, Tripathy D K, De S K (1998). Hysteresis and strain-dependent dynamic mechanical properties of epoxidized natural rubber filled with surface-oxidized carbon black. Journal of Applied Polymer Science, 70(4): 723–730

    Article  CAS  Google Scholar 

  • Manna A K, De P P, Tripathy D K, De S K, Chatterjee M K (1997). Chemical interaction between surface oxidized carbon black and epoxidized natural rubber. Rubber Chemistry and Technology, 70(4): 624–633

    Article  CAS  Google Scholar 

  • Martínez J D, Cardona-Uribe N, Murillo R, García T, López J M (2019). Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding. Waste Management (New York, N.Y.), 85: 574–584

    Article  CAS  Google Scholar 

  • Mathew T, Datta R N, Dierkes W K, Talma A G, Van Ooij W J, Noordermeer J W M (2011). Plasma polymerization surface modification of carbon black and its effect in elastomers. 296(1): 42–52

    CAS  Google Scholar 

  • Chaala A, Darmstadt H, Roy C (1996). Acid-base method for the demineralization of pyrolytic carbon black. Fuel Processing Technology, 46(1): 1–15

    Article  CAS  Google Scholar 

  • Medalia A I, Kraus G (1994). Science and Technology of Rubber, 2nd ed.. Mark J E, Erman B, Eirich F R, eds. San Diego: Academic Press, 387–418

  • Merchant A A, Petrich M A (1993). Pyrolysis of scrap tires and conversion of chars to activated carbon. AIChE Journal, 39(8): 1370–1376

    Article  CAS  Google Scholar 

  • Mikulova Z, Sedenkova I, Matejova L, Večeř M, Dombek V (2013). Study of carbon black obtained by pyrolysis of waste scrap tyres. Journal of thermal analysis and calorimetry, 111(2): 1475–1481

    Article  CAS  Google Scholar 

  • Mui E L K, Cheung W H, McKay G (2010). Tyre char preparation from waste tyre rubber for dye removal from effluents. Journal of Hazardous Materials, 175(1–3): 151–158

    Article  CAS  Google Scholar 

  • Murillo R, Aylón E, Navarro M V, Callén M S, Aranda A, Mastral A M (2006). The application of thermal processes to valorise waste tyre. Fuel Processing Technology, 87(2): 143–147

    Article  CAS  Google Scholar 

  • Murena F, Garufi E, Gioia F (1996). Hydrogenative pyrolysis of waste tyres: Kinetic analysis. Journal of Hazardous Materials, 50(2): 143–156

    Article  CAS  Google Scholar 

  • Murillo R, Navarro M V, García T, López J M, Callén M S, Aylón E, Mastral A M (2005). Production and application of activated carbons made from waste tire. Industrial & Engineering Chemistry Research, 44(18): 7228–7233

    Article  CAS  Google Scholar 

  • Nakahara M, Takada T, Kumagai H, Sanada Y (1995). Surface chemistry of carbon black through curing process of epoxy resin. Carbon, 33(11): 1537–1540

    Article  CAS  Google Scholar 

  • Namane A, Mekarzia A, Benrachedi K, Belhaneche-Bensemra N, Hellal A (2005). Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4. Journal of Hazardous Materials, 119(1–3): 189–194

    Article  CAS  Google Scholar 

  • Napoli A, Soudais Y, Lecomte D, Castillo S (1997). Scrap tyre pyrolysis: Are the effluents valuable products? Journal of Analytical and Applied Pyrolysis, 40–41: 373–382

    Article  Google Scholar 

  • Nunes M R, Perez G M, Loguercio L F, Alves E W, Carreño N L V, Martins J L, Garcia I T S (2011). Active carbon preparation from treads of tire waste for dye removal in waste water. Journal of the Brazilian Chemical Society, 22: 2027–2035

    Article  CAS  Google Scholar 

  • Olazar M, Aguado R, Arabiourrutia M, Lopez G, Barona A, Bilbao J (2008). Catalyst effect on the composition of tire pyrolysis products. Energy & Fuels, 22(5): 2909–2916

    Article  CAS  Google Scholar 

  • Pantea D, Darmstadt H, Kaliaguine S, Roy C (2003). Heat-treatment of carbon blacks obtained by pyrolysis of used tires. Effect on the surface chemistry, porosity and electrical conductivity. Journal of Analytical and Applied Pyrolysis, 67(1): 55–76

    Article  CAS  Google Scholar 

  • Payne A R (1966). Effect of dispersion on dynamic properties of filler-loaded rubbers. Rubber Chemistry and Technology, 39(2): 365–374

    Article  Google Scholar 

  • Payne A R (1967). Dynamic properties of PBNA—natural rubber vulcanizates. Journal of Applied Polymer Science, 11(3): 383–387

    Article  CAS  Google Scholar 

  • Pazat A, Barrès C, Bruno F, Janin C, Beyou E (2018). Preparation and properties of elastomer composites containing “graphene”-based fillers: A review. Polymer Reviews, 58(3): 403–443

    Article  CAS  Google Scholar 

  • Probst N, Grivei E, Fabry F, Fulcheri L, Flamant G, Bourrat X, Schroder A (2002). Quality and performance of carbon blacks from plasma process. Rubber Chemistry and Technology, 75(5): 891–906

    Article  CAS  Google Scholar 

  • De Marco Rodriguez I, Laresgoiti M F, Cabrero M A, Torres A, Chomón M J, Caballero B (2001). Pyrolysis of scrap tyres. Fuel Processing Technology, 72(1): 9–22

    Article  Google Scholar 

  • Roy C, Chaala A, Darmstadt H (1999). The vacuum pyrolysis of used tires. Journal of Analytical and Applied Pyrolysis, 51(1): 201–221

    Article  CAS  Google Scholar 

  • Roy C, Chaala A, Darmstadt H, De Caumia B, Pakdel H, Yang J (2005). Rubber Recycling. Boca Raton: CRC Press Taylor & Francis Group Florida, 458–499

    Google Scholar 

  • Roy C, Rastegar A, Kaliaguine S, Darmstadt H, Tochev V (1995). Physicochemical properties of carbon-blacks from vacuum pyrolysis of used tires. Plastics, Rubber and Composites Processing and Applications, 23(1): 21–30

    CAS  Google Scholar 

  • Sahouli B, Blacher S, Brouers F, Darmstadt H, Roy C, Kaliaguine S (1996a). Surface morphology and chemistry of commercial carbon black and carbon black from vacuum pyrolysis of used tyres. Fuel, 75(10): 1244–1250

    Article  CAS  Google Scholar 

  • Sahouli B, Blacher S, Brouers F, Sobry R, Van Den Bossche G, Diez B, Darmstadt H, Roy C, Kaliaguine S (1996). Surface morphology of commercial carbon blacks and carbon blacks from pyrolysis of used tyres by small-angle X-ray scattering. Carbon, 34(5): 633–637

    Article  CAS  Google Scholar 

  • Saleh T A, Gupta V K, Al-Saadi A A (2013). Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: Experimental and computational study. Journal of Colloid and Interface Science, 396: 264–269

    Article  CAS  Google Scholar 

  • Senneca O, Salatino P, Chirone R (1999). A fast heating-rate thermogravimetric study of the pyrolysis of scrap tyres. Fuel, 78(13): 1575–1581

    Article  CAS  Google Scholar 

  • Shah J, Jan M R, Mabood F, Shahid M (2006). Conversion of waste tyres into carbon black and their utilization as adsorbent. Journal of the Chinese Chemical Society, 53(5): 1085–1089

    Article  CAS  Google Scholar 

  • Smith Y R, Bhattacharyya D, Willhard T, Misra M (2016). Adsorption of aqueous rare earth elements using carbon black derived from recycled tires. Chemical Engineering Journal, 296: 102–111

    Article  CAS  Google Scholar 

  • Song P, Wan C, Xie Y, Formela K, Wang S (2018a). Vegetable derived-oil facilitating carbon black migration from waste tire rubbers and its reinforcement effect. Waste Management, 78: 238–248

    Article  CAS  Google Scholar 

  • Song P, Wan C, Xie Y, Zhang Z, Wang S (2018b). Stepwise exfoliation of bound rubber from carbon black nanoparticles and the structure characterization. Polymer Testing, 71: 115–124

    Article  CAS  Google Scholar 

  • Song P, Zhao X, Cheng X, Li S, Wang S (2018c). Recycling the nanostructured carbon from waste tires. Composites Communications, 7: 12–15

    Article  Google Scholar 

  • Song X H, Xu R, Lai A, Lo H L, Neo F L, Wang K (2012). Preparation and characterization of mesoporous activated carbons from waste tyre. Asia-Pacific Journal of Chemical Engineering, 7(3): 474–478

    Article  CAS  Google Scholar 

  • Subulan K, Taşan A S, Baykasoğlu A (2015). Designing an environmentally conscious tire closed-loop supply chain network with multiple recovery options using interactive fuzzy goal programming. Applied Mathematical Modelling, 39(9): 2661–2702

    Article  Google Scholar 

  • Sugatri R I, Wirasadewa Y C, Saputro K E, Muslih E Y, Ikono R, Nasir M (2018). Recycled carbon black from waste of tire industry: thermal study. Microsystem Technologies, 24(1): 749–755

    Article  CAS  Google Scholar 

  • Sun X, Liu J, Hong J, Lu B (2016). Life cycle assessment of Chinese radial passenger vehicle tire. International Journal of Life Cycle Assessment, 21(12): 1749–1758

    Article  CAS  Google Scholar 

  • Sutherland I, Sheng E, Bradley R, Freakley P (1996). Effects of ozone oxidation on carbon black surfaces. Journal of Materials Science, 31(21): 5651–5655

    Article  CAS  Google Scholar 

  • Tang L, Huang H (2004). An investigation of sulfur distribution during thermal plasma pyrolysis of used tires. Journal of Analytical and Applied Pyrolysis, 72(1): 35–40

    Article  CAS  Google Scholar 

  • Tang L, Huang H (2005). Thermal plasma pyrolysis of used tires for carbon black recovery. Journal of Materials Science, 40(14): 3817–3819

    Article  CAS  Google Scholar 

  • Tanthapanichakoon W, Ariyadejwanich P, Japthong P, Nakagawa K, Mukai S R, Tamon H (2005). Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Research, 39(7): 1347–1353

    Article  CAS  Google Scholar 

  • Thomas B S, Gupta R C (2016). A comprehensive review on the applications of waste tire rubber in cement concrete. Renewable & Sustainable Energy Reviews, 54: 1323–1333

    Article  CAS  Google Scholar 

  • Tsubokawa N (1992). Functionalization of carbon black by surface grafting of polymers. Progress in Polymer Science, 17(3): 417–470

    Article  CAS  Google Scholar 

  • Ucar S, Karagoz S, Ozkan A R, Yanik J (2005). Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel, 84(14–15): 1884–1892

    Article  CAS  Google Scholar 

  • Varaprasad K, Diwakar B S, Donoso C, Ramam K, Sadiku R (2017). Metal-oxide polymer nanocomposite films from disposable scrap tire powder/poly-epsilon-caprolactone for advanced electrical energy (capacitor) applications. Journal of Cleaner Production, 161: 888–895

    Article  CAS  Google Scholar 

  • Wang A (2012). Bigger, better, broader: A perspective on China’s auto market in 2020. Hong Kong: McKinsey&Company

    Google Scholar 

  • WBCSD (2008). Managing End-of-Life Tires

  • Williams P T, Besler S (1995). Pyrolysis-thermogravimetric analysis of tyres and tyre components. Fuel, 74(9): 1277–1283

    Article  CAS  Google Scholar 

  • Williams P T, Besler S, Taylor D T (1990). The pyrolysis of scrap automotive tyres. Fuel, 69(12): 1474–1482

    Article  CAS  Google Scholar 

  • Williams P T, Besler S, Taylor D T, Bottrill R P (1995). Pyrolysis of automotive tyre waste. Journal of the Institute of Energy, 68(474): 11–21

    CAS  Google Scholar 

  • Williams P T, Bottrill R P (1995). Sulfur-polycyclic aromatic hydrocarbons in tyre pyrolysis oil. Fuel, 74(5): 736–742

    Article  CAS  Google Scholar 

  • Williams P T, Bottrill R P, Cunliffe A M (1998). Combustion of tyre pyrolysis oil. Process Safety and Environmental Protection, 76(4): 291–301

    Article  CAS  Google Scholar 

  • Williams P T, Taylor D T (1993). Aromatization of tyre pyrolysis oil to yield polycyclic aromatic hydrocarbons. Fuel, 72(11): 1469–1474

    Article  CAS  Google Scholar 

  • Wu Z Y, Ma C, Bai Y L, Liu Y S, Wang S F, Wei X, Wang K X, Chen J S (2018). Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage. Dalton transactions (Cambridge, England: 2003), 47(14): 4885–4892

    Article  CAS  Google Scholar 

  • Xu S, Lai D, Zeng X, Zhang L, Han Z, Cheng J, Wu R, Mašek O, Xu G (2018). Pyrolysis characteristics of waste tire particles in fixed-bed reactor with internals. Carbon Resources Conversion, 1(3): 228–237

    Article  Google Scholar 

  • Yan J, Yan D, Chi Y, Pei Y, Ni M, Ce K (2006). Porosity and surface chemistry properties of carbon blacks from pyrolysis of used tires in a pilot-scale rotary kiln. Journal of Zhejiang University (Engineering Science), 40(10): 1805–1810 (in Chinese)

    CAS  Google Scholar 

  • Yazdani E, Hashemabadi S H, Taghizadeh A (2019). Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature. Waste Management (New York, N.Y.), 85: 195–201

    Article  CAS  Google Scholar 

  • Yuan J J, Hong R Y, Wang Y Q, Feng W G (2014). Low-temperature plasma preparation and application of carbon black nanoparticles. Chemical Engineering Journal, 253: 107–120

    Article  CAS  Google Scholar 

  • Zabaniotou A A, Stavropoulos G (2003). Pyrolysis of used automobile tires and residual char utilization. Journal of Analytical and Applied Pyrolysis, 70(2): 711–722

    Article  CAS  Google Scholar 

  • Zhang C, Liu T, Lu X (2010). Facile fabrication of polystyrene/carbon nanotube composite nanospheres with core-shell structure via self-assembly. Polymer, 51(16): 3715–3721

    Article  CAS  Google Scholar 

  • Zhang X, Li H, Cao Q, Jin L, Wang F (2018). Upgrading pyrolytic residue from waste tires to commercial carbon black. Waste Manag Res, 36(5): 436–444

    Article  CAS  Google Scholar 

  • Zhang X, Wang T, Ma L, Chang J (2008). Vacuum pyrolysis of waste tires with basic additives. Waste Management (New York, N.Y.), 28(11): 2301–2310

    Article  CAS  Google Scholar 

  • Zhao P, Han Y, Dong X, Zhang C, Liu S (2015). Application of activated carbons derived from scrap tires as electrode materials for super-capacitors. ECS Journal of Solid State Science and Technology: JSS, 4(7): M35–M40

    Article  CAS  Google Scholar 

  • Zhi M, Yang F, Meng F, Li M, Manivannan A, Wu N (2014). Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires. ACS Sustainable Chemistry & Engineering, 2(7): 1592–1598

    Article  CAS  Google Scholar 

  • Zhou J, Wang J, Ren X, Yang Y, Jiang B (2006). Surface modification of pyrolytic carbon black from waste tires and its use as pigment for offset printing ink. Chinese Journal of Chemical Engineering, 14(5): 654–659

    Article  CAS  Google Scholar 

  • Zhou J, Yu T, Wu S, Xie Z, Yang Y (2010). Inverse gas chromatography investigation of rubber reinforcement by modified pyrolytic carbon black from scrap tires. Industrial & Engineering Chemistry Research, 49(4): 1691–1696

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Shanghai Municipal Education Commission-Gaofeng Environment and Ecology Grant Support (No. HJGFXK-2017-002). The authors would like to thank the anonymous reviewers for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Li.

Additional information

Highlights

• Modification methodologies of upgrading CBp from ELTs were reviewed.

• Surface microstructures and physiochemical properties of CBp were analyzed.

• Future perspectives of ELTs pyrolysis industries were suggested.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Xu, J., Li, Z. et al. Upgrading pyrolytic carbon-blacks (CBp) from end-of-life tires: Characteristics and modification methodologies. Front. Environ. Sci. Eng. 14, 19 (2020). https://doi.org/10.1007/s11783-019-1198-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-019-1198-0

Keywords

Navigation