Skip to main content
Log in

Pollution and biodegradation of hexabromocyclododecanes: A review

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Hexabromocyclododecanes (HBCDs) are the most common brominated flame-retardants after polybrominated diphenyl ethers. HBCDs can induce cancer by causing inappropriate antidiuretic hormone syndrome. Environmental contamination with HBCDs has been detected globally, with concentrations ranging from ng to μg. Methods to degrade HBCDs include physicochemical methods, bioremediation, and phytoremediation. The photodegradation of HBCDs using simulated sunlight or ultraviolet lamps, or chemical catalysts are inefficient and expensive, as is physicochemical degradation. Consequently, bioremediation is considered as the most cost-effective and clean approach. To date, five bacterial strains capable of degrading HBCDs have been isolated and identified: Pseudomonas sp. HB01, Bacillus sp. HBCD-sjtu, Achromobacter sp. HBCD-1, Achromobacter sp. HBCD-2, and Pseudomonas aeruginosa HS9. The molecular mechanisms of biodegradation of HBCDs are discussed in this review. New microbial resources should be explored to increase the resource library in order to identify more HBCD-degrading microbes and functional genes. Synthetic biology methods may be exploited to accelerate the biodegradation capability of existing bacteria, including modification of the degrading strains or functional enzymes, and artificial construction of the degradation microflora. The most potentially useful method is combining microdegradation with physicochemical methods and phytoremediation. For example, exogenous microorganisms might be used to stimulate the adsorption capability of plants for HBCDs, or to utilize an interaction between exogenous microorganisms and rhizosphere microorganisms to form a new rhizosphere microbial community to enhance the biodegradation and absorption of HBCDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdallah M A, Harrad S (2011). Tetrabromobisphenol-A, hexabromocyclododecane and its degradation products in UK human milk: Relationship to external exposure. Environment International, 37(2): 443–148

    Article  CAS  Google Scholar 

  • Arita S, Yamaguchi K, Motokucho S, Nakatani H (2017). Selective decomposition of hexabromocyclododecane in polystyrene with a photo and thermal hybrid treatment system. Polymer Degradation & Stability, 143: 130–135

    Article  CAS  Google Scholar 

  • Batty L C, Anslow M (2008). Effect of a polycyclic aromatic hydrocarbon on the phytoremediation of zinc by two plant species (Brassica juncea and Festuca arundinacea). International Journal of Phytoremediation, 10(3): 236–249

    Article  CAS  Google Scholar 

  • Brett H R, Marc L, Daniel P, Robert R B, John H K, Paul E H (1998). The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil, 203(1): 47–56

    Article  Google Scholar 

  • Brooks R R (1977). Copper and cobalt uptake by Haumaniastrum species. Plant and Soil, 48(2): 541–544

    Article  CAS  Google Scholar 

  • Carignan C C, Abdallah M A, Wu N, Heiger-Bernays W, McClean M D, Harrad S, Webster T F (2012). Predictors of tetrabromobisphenol-A (TBBP-A) and hexabromocyclododecanes (HBCD) in milk from Boston mothers. Environmental Science & Technology, 46(21): 12146–12153

    Article  CAS  Google Scholar 

  • Chen J, Wang C, Pan Y, Farzana S S, Tam N F (2018). Biochar accelerates microbial reductive debromination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in anaerobic mangrove sediments. Journal of Hazardous Materials, 341: 177–186

    Article  CAS  Google Scholar 

  • Chi X, Zhang Y, Wang D, Wang F, Liang W (2018). The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45. Frontiers of Environmental Science & Engineering, 12(1): 11

    Article  CAS  Google Scholar 

  • Davis J W, Gonsior S, Marty G, Ariano J (2005). The transformation of hexabromocyclododecane in aerobic and anaerobic soils and aquatic sediments. Water Research, 39(6): 1075–1084

    Article  CAS  Google Scholar 

  • Davis J W, Gonsior S J, Markham D A, Friederich U, Hunziker R W, Ariano J M (2006). Biodegradation and product identification of [14C]hexabromocyclododecane in wastewater sludge and freshwater aquatic sediment. Environmental Science & Technology, 40(17): 5395–5401

    Article  CAS  Google Scholar 

  • Drage D, Mueller J F, Birch G, Eaglesham G, Hearn L K, Harrad S (2015). Historical trends of PBDEs and HBCDs in sediment cores from Sydney estuary, Australia. Science of the Total Environment, 512–513: 177–184

    Article  CAS  Google Scholar 

  • Ema M, Fujii S, Hirata-Koizumi M, Matsumoto M (2008). Two-generation reproductive toxicity study of the flame retardant hexabromocyclododecane in rats. Reproductive Toxicology (Elmsford, N.Y.), 25(3): 335–351

    Article  CAS  Google Scholar 

  • Fennell D E, Nijenhuis I, Wilson S F, Zinder S H, Häggblom M M (2004). Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environmental Science & Technology, 38(7): 2075–2081

    Article  CAS  Google Scholar 

  • Fery Y, Buschauer I, Salzig C, Lang P, Schrenk D (2009). Technical pentabromodiphenyl ether and hexabromocyclododecane as activators of thepregnane-X-receptor(PXR). Toxicology, 264(1–2): 45–51

    Article  CAS  Google Scholar 

  • Fonseca V M, Jr V J F, Araujo A S, Carvalho L H, Souza A G (2005). Effect of halogenated flame-retardant additives in the pyrolysis and thermal degradation of polyester/sisal composites. Journal of Thermal Analysis and Calorimetry, 79(2): 429–433

    Article  CAS  Google Scholar 

  • Garg N, Bala K, Lal R (2012). Sphingobium lucknowense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 62(3): 618–623

    Article  CAS  Google Scholar 

  • Glick B R (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21(5): 383–393

    Article  CAS  Google Scholar 

  • Ha NTH, Sakakibara, M, Sano S (2010). Phytoremediation of Sb, As, Cu, and Zn from contaminated water by the aquatic macrophyte eleocharis acicularis. Clean- Soil Air Water, 37(9): 720–725

    Article  CAS  Google Scholar 

  • He J, Ritalahti K M, Yang K L, Koenigsberg S S, Löffler F E (2003). Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 424(6944): 62–65

    Article  CAS  Google Scholar 

  • Heeb N V, Wyss S A, Geueke B, Fleischmann T, Kohler H E, Lienemann P (2014). LinA2, a HCH-converting bacterial enzyme that dehydrohalogenates HBCDs. Chemosphere, 107: 194–202

    Article  CAS  Google Scholar 

  • Ho K F, Ho S S H, Lee S C, Cheng J, Watson J, Louie P K K, Tian L (2009). Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong. Atmospheric Environment, 43(40): 6343–6351

    Article  CAS  Google Scholar 

  • Huang L, Wang W, Shah S B, Hu H, Xu P, Tang H (2019). The HBCDs biodegradation using a Pseudomonas strain and its application in soil phytoremediation. Journal of Hazardous Materials, 380: 120833

    Article  CAS  Google Scholar 

  • Kim G B, Stapleton H M (2010). PBDEs, methoxylated PBDEs and HBCDs in Japanese common squid (Todarodes pacificus) from Korean offshore waters. Marine Pollution Bulletin, 60(6): 935–940 PMID:20394952

    Article  CAS  Google Scholar 

  • Košnâř Z, Částková T, Wiesnerová L, Praus L, Jablonský I, Koudela M, Tlustoš P (2019). Comparing the removal of polycyclic aromatic hydrocarbons in soil after different bioremediation approaches in relationto the extracellular enzyme activities. Journal of Environmental Sciences-China, 76(2): 249–258

    Article  Google Scholar 

  • Lee L K, Ding C, Yang K L, He J (2011). Complete debromination of tetra- and penta-brominated diphenyl ethers by a coculture consisting of dehalococcoides and desulfovibrio species. Environmental Science & Technology, 45(19): 8475–8482

    Article  CAS  Google Scholar 

  • Li L, Weber R, Liu J, Hu J (2016). Long-term emissions of hexabromocyclododecane as a chemical of concern in products in China. Environment International, 91: 291–300

    Article  CAS  Google Scholar 

  • Li Y, Wang L, Zhu X, Gao Y, Chen J (2017). Determination of hexabromocyclododecanes in ambient air by high performance liquid chromatography- electrospray ionization-mass spectrometry. Se Pu, 35(10): 1080–1085 (in Chinese)

    CAS  Google Scholar 

  • Liu Q, Li M, Liu R, Zhang Q, Wu D, Zhu D N, Shen X H, Feng C P, Zhang F W, Liu X (2019). Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities. Frontiers of Environmental Science & Engineering, 13(2): 28

    Article  CAS  Google Scholar 

  • Liu Q, Li M, Liu X, Zhang Q, Liu R, Wang Z, Shi X, Quan J, Shen X, Zhang F (2018). Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism. Frontiers of Environmental Science & Engineering, 12(6): 6

    Article  CAS  Google Scholar 

  • Liu W W, Yin R, Lin X G, Zhang J, Chen X M, Li X Z, Yang T (2010). Interaction of biosurfactant-microorganism to enhance phytoremediation of aged polycyclic aromatic hydrocarbons (PAHS) contaminated soils with alfalfa (Medicago sativa L.). Environmental Science, 31(4): 1079–1084 (in Chinese)

    CAS  Google Scholar 

  • Lu J F, He M J, Yang Z H, Wei S Q (2018). Occurrence of tetrabromobisphenol a (TBBPA) and hexabromocyclododecane (HBCD) in soil and road dust in Chongqing, western China, with emphasis on diastereoisomer profiles, particle size distribution, and human exposure. Environmental Pollution, 242(A): 219–228

    Article  CAS  Google Scholar 

  • Luijten M L G C, de Weert J, Smidt H, Boschker H T S, de Vos W M, Schraa G, Stams A J M (2003). Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. International Journal of Systematic and Evolutionary Microbiology, 53(3): 787–793

    Article  CAS  Google Scholar 

  • Maymó-Gatell X, Chien Y, Gossett J M, Zinder S H (1997). Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science, 276(5318): 1568–1571

    Article  Google Scholar 

  • Minh N H, Isobe T, Ueno D, Matsumoto K, Mine M, Kajiwara N, Takahashi S, Tanabe S (2007). Spatial distribution and vertical profile of polybrominated diphenyl ethers and hexabromocyclododecanes in sediment core from Tokyo Bay, Japan. Environmental Pollution, 148(2): 409–417

    Article  CAS  Google Scholar 

  • Munschy C, Marchand P, Venisseau A, Veyrand B, Zendong Z (2013). Levels and trends of the emerging contaminants HBCDs (hexabromocyclododecanes) and PFCs (perfluorinated compounds) in marine shellfish along French coasts. Chemosphere, 91(2): 233–240

    Article  CAS  Google Scholar 

  • Muthu I G S, Nirkayani B, Kavithakani A, Padmanaban V C (2019). Statistical modeling of radiolytic (60Coγ) degradation of ofloxacin, antibiotic: Synergetic effect, kinetic studies & assessment of its degraded metabolites. Frontiers of Environmental Science & Engineering, 13(3): 42

    Article  CAS  Google Scholar 

  • Ni H G, Zeng H (2013). HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China. Science of the Total Environment, 458–460: 15–19

    Article  CAS  Google Scholar 

  • Palace V P, Pleskach K, Halldorson T, Danell R, Wautier K, Evans B, Alaee M, Marvin C, Tomy G T (2008). Biotransformation enzymes and thyroid axis disruption in juvenile rainbow trout (Oncorhynchus mykiss) exposed to hexabromocyclododecane diastereoisomers. Environmental Science & Technology, 42(6): 1967–1972

    Article  CAS  Google Scholar 

  • Peng X, Huang X, Jing F, Zhang Z, Wei D, Jia X (2015). Study of novel pure culture HBCD-1, effectively degrading Hexabromocyclododecane, isolated from an anaerobic reactor. Bioresource Technology, 185: 218–224

    Article  CAS  Google Scholar 

  • Peng X, Wei D, Huang Q, Jia X (2018). Debromination of hexabromocyclododecane by anaerobic consortium and characterization of functional bacteria. Frontiers in Microbiology, 9: 1515

    Article  Google Scholar 

  • POPRC (2011). Report of the persisitent organic pollutants review committee on the work of its seventh meeting: Risk management evaluation on hexabromocyclododecane. Geneva: POPRC

    Google Scholar 

  • Scholz-Muramatsu H, Neumann A, Messmer M, Moore E, Diekert G (1995). Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Archives of Microbiology, 163(1): 4856

    Article  Google Scholar 

  • Shah S B, Ali F, Huang L, Wang W, Xu P, Tang H (2018). Complete genome sequence of Bacillus sp. HBCD-sjtu, an efficient HBCD-degrading bacterium. 3Biotech, 8(7): 291

    Google Scholar 

  • Shah S B, Hu H Y, Wang W W, Liu Y F, Ali F, Xu P, Tang H Z (2019a). Evaluation of plant growth promoting (PGP) activity of strain HBCD-sjtu. Journal of Biological Regulators and Homeostatic Agents, 33: 129–134

    Google Scholar 

  • Shah S B, Kaushik A C, Ali F, Huang L, Lu X, Sartaj L, Xu P, Tang H (2019b). Computational and in vitro analysis of an HBCD degrading gene DehHZ1 from strain HBCD-sjtu. Journal of Biological Regulators and Homeostatic Agents, 33(1): 157–162

    CAS  Google Scholar 

  • Stiborova H, Vrkoslavova J, Pulkrabova J, Poustka J, Hajslova J, Demnerova K (2015). Dynamics of brominated flame retardants removal in contaminated wastewater sewage sludge under anaerobic conditions. Science of the Total Environment, 533: 439–445

    Article  CAS  Google Scholar 

  • Su J, Lu Y, Liu Z, Gao S, Zeng X, Yu Z, Sheng G, Fu J M (2015). Distribution of polybrominated diphenyl ethers and HBCD in sediments of the Hunhe River in Northeast China. Environmental Science and Pollution Research International, 22(21): 16781–16790

    Article  CAS  Google Scholar 

  • Sun R, Luo X, Zheng X, Cao K, Peng P, Li Q X, Mai B (2018). Hexabromocyclododecanes (HBCDs) in fish: Evidence of recent HBCD input into the coastal environment. Marine Pollution Bulletin, 126: 357–362

    Article  CAS  Google Scholar 

  • Szabo D T, Diliberto J J, Hakk H, Huwe J K, Birnbaum L S (2011). Toxicokinetics of the flame retardant hexabromocyclododecane alpha: effect of dose, timing, route, repeated exposure, and metabolism. Toxicological Sciences, 121(2): 234–244

    Article  CAS  Google Scholar 

  • Van der Ven L T, Verhoef A, van de Kuil T, Slob W, Leonards P E, Visser T J, Hamers T, Herlin M, Håkansson H, Olausson H, Piersma A H, Vos J G (2006). A 28-day oral dose toxicity study enhanced to detect endocrine effects of hexabromocyclododecane in Wistar rats. Toxicological Sciences, 94(2): 281–292

    Article  CAS  Google Scholar 

  • Wu T, Huang H, Zhang S (2016). Accumulation and phytotoxicity of technical hexabromocyclododecane in maize. Journal of Environmental Sciences-China, 42(4): 97–104

    Article  CAS  Google Scholar 

  • Wu T, Wang S, Huang H, Zhang S (2012). Diastereomer-specific uptake, translocation, and toxicity of hexabromocyclododecane diastereoisomers to maize. Journal of Agricultural and Food Chemistry, 60(34): 8528–8534

    Article  CAS  Google Scholar 

  • Xia J, Wang H, Stanford R L, Pan G, Yu S L (2018). Hydrologic and water quality performance of a laboratory scale bioretention unit. Frontiers of Environmental Science & Engineering, 12(1): 14

    Article  CAS  Google Scholar 

  • Xian Q, Ramu K, Isobe T, Sudaryanto A, Liu X, Gao Z, Takahashi S, Yu H, Tanabe S (2008). Levels and body distribution of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) in freshwater fishes from the Yangtze River, China. Chemosphere, 71(2): 268–276

    Article  CAS  Google Scholar 

  • Yamada T, Takahama Y, Yamada Y (2009). Isolation of Pseudomonas sp. strain HB01 which degrades the persistent brominated flame retardant γ-hexabromocyclododecane. Nippon Nogeikagaku Kaishi, 73(7): 1674–1678

    CAS  Google Scholar 

  • Yi S, Liu J G, Jin J, Zhu J (2016). Assessment of the occupational and environmental risks of hexabromocyclododecane (HBCD) in China. Chemosphere, 150: 431–437

    Article  CAS  Google Scholar 

  • Zhang H, Kuo Y Y, Gerecke A C, Wang J (2012a). Co-release of hexabromocyclododecane (HBCD) and Nano- and microparticles from thermal cutting of polystyrene foams. Environmental Science & Technology, 46(20): 10990–10996

    Article  CAS  Google Scholar 

  • Zhang K, Huang J, Wang H, Liu K, Yu G, Deng S, Wang B (2014). Mechanochemical degradation of hexabromocyclododecane and approaches for the remediation of its contaminated soil. Chemosphere, 116: 40–45

    Article  CAS  Google Scholar 

  • Zhang X, Yang H, Cui Z (2017). Alleviating effect and mechanism of flavonols in Arabidopsis resistance under Pb-HBCD stress. ACS Sustainable Chemistry & Engineering, 5(11): 11034–11041

    Article  CAS  Google Scholar 

  • Zhang Y, Ruan Y, Sun H, Zhao L, Gan Z (2013). Hexabromocyclododecanes in surface sediments and a sediment core from Rivers and Harbor in the northern Chinese city of Tianjin. Chemosphere, 90(5): 1610–1616

    Article  CAS  Google Scholar 

  • Zhang Y, Wang H, Yu Z, Geng X, Chen C, Li D, Zhu X, Zhen H, Huang W, Fennell D E, Young L Y, Peng P (2018). Diastereoisomer-specific biotransformation of hexabromocyclododecanes by a mixed culture containing Dehalococcoides mccartyi strain 195. Frontiers in Microbiology, 9: 1713

    Article  Google Scholar 

  • Zhang Z, Rengel Z, Chang H, Meney K, Pantelic L, Tomanovc R (2012b). Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma, 175–176: 1–8

    Article  CAS  Google Scholar 

  • Zheng X, Qiao L, Sun R, Luo X, Zheng J, Xie Q, Sun Y, Mai B (2017). Alteration of diastereoisomeric and enantiomeric profiles of hexabromocyclododecanes (HBCDs) in adult chicken tissues, eggs, and hatchling chickens. Environmental Science & Technology, 51(10): 5492–5499

    Article  CAS  Google Scholar 

  • Zhou D, Wu Y, Feng X, Chen Y, Wang Z, Tao T, Wei D (2014). Photodegradation of hexabromocyclododecane (HBCD) by Fe(III) complexes/H2O2 under simulated sunlight. Environmental Science and Pollution Research International, 21(9): 6228–6233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Project (No. SQ2018YFA090024); “Shuguang Program” (No. 17SG09) supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission; National Natural Science Foundation of China (Grant No. 31770114); National Natural Science Fund for Excellent Young Scholars (No. 31422004); and Science and Technology Commission of Shanghai Municipality (No. 17JC1403300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Tang.

Additional information

Highlights

• Bioremediation is the most cost-effective approach for degradation of HBCDs.

• Bacteria or bacterial consortia are used in the cases of bio-augmentation.

• Microbes combined with phytoremediation increase the remediation efficiency.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Shah, S.B., Hu, H. et al. Pollution and biodegradation of hexabromocyclododecanes: A review. Front. Environ. Sci. Eng. 14, 11 (2020). https://doi.org/10.1007/s11783-019-1190-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-019-1190-8

Keywords

Navigation