Skip to main content
Log in

Source attribution for mercury deposition with an updated atmospheric mercury emission inventory in the Pearl River Delta Region, China

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

We used CMAQ-Hg to simulate mercury pollution and identify main sources in the Pearl River Delta (PRD) with updated local emission inventory and latest regional and global emissions. The total anthropogenic mercury emissions in the PRD for 2014 were 11,939.6 kg. Power plants and industrial boilers were dominant sectors, responsible for 29.4 and 22.7%. We first compared model predictions and observations and the results showed a good performance. Then five scenarios with power plants (PP), municipal solid waste incineration (MSWI), industrial point sources (IP), natural sources (NAT), and boundary conditions (BCs) zeroed out separately were simulated and compared with the base case. BCs was responsible for over 30% of annual average mercury concentration and total deposition while NAT contributed around 15%. Among the anthropogenic sources, IP (22.9%) was dominant with a contribution over 20.0% and PP (18.9%) and MSWI (11.2%) ranked second and third. Results also showed that power plants were the most important emission sources in the central PRD, where the ultra-low emission for thermal power units need to be strengthened. In the northern and western PRD, cement and metal productions were priorities for mercury control. The fast growth of municipal solid waste incineration were also a key factor in the core areas. In addition, a coordinated regional mercury emission control was important for effectively controlling pollution. In the future, mercury emissions will decrease as control measures are strengthened, more attention should be paid to mercury deposition around the large point sources as high levels of pollution are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bash J O, Bresnahan P, Miller D R (2007). Dynamic surface interface exchanges of mercury: A review and compartmentalized modeling framework. Journal of Applied Meteorology and Climatology, 46 (10): 1606–1618

    Article  Google Scholar 

  • Bullock O R Jr, Atkinson D, Braverman T, Civerolo K, Dastoor A, Davignon D, Ku J Y, Lohman K, Myers T C, Park R J, Seigneur C, Selin N E, Sistla G, Vijayaraghavan K (2008). The North American Mercury Model Intercomparison Study (NAMMIS): Study description and model-to-model comparisons. Journal of Geophysical Research, D, Atmospheres, 113(D17): 17

    Article  Google Scholar 

  • Bullock O R Jr, Atkinson D, Braverman T, Civerolo K, Dastoor A, Davignon D, Ku J Y, Lohman K, Myers T C, Park R J, Seigneur C, Selin N E, Sistla G, Vijayaraghavan K (2009). An analysis of simulated wet deposition of mercury from the North American Mercury Model Intercomparison Study. Journal of Geophysical Research, D, Atmospheres, 114(D8): 12

    Article  Google Scholar 

  • Bullock O R Jr, Brehme K A (2002). Atmospheric mercury simulation using the CMAQ model: formulation description and analysis of wet deposition results. Atmospheric Environment, 36(13): 2135–2146

    Article  CAS  Google Scholar 

  • Chen L, Liu M, Fan R, Ma S, Xu Z, Ren M, He Q (2013). Mercury speciation and emission from municipal solid waste incinerators in the Pearl River Delta, South China. Science of the Total Environment, 447: 396–402

    Article  CAS  Google Scholar 

  • Chen L G, Liu M, Xu Z C, Fan R F, Tao J, Chen D H, Zhang D Q, Xie D H, Sun J R (2013). Variation trends and influencing factors of total gaseous mercury in the Pearl River Delta-A highly industrialised region in South China influenced by seasonal monsoons. Atmospheric Environment, 77: 757–766

    Article  CAS  Google Scholar 

  • Holloway T, Voigt C, Morton J, Spak S N, Rutter A P, Schauer J J (2012). An assessment of atmospheric mercury in the Community Multiscale Air Quality (CMAQ) model at an urban site and a rural site in the Great Lakes Region of North America. Atmospheric Chemistry and Physics, 12(15): 7117–7133

    Article  CAS  Google Scholar 

  • Holmes C D, Jacob D J, Mason R P, Jaffe D A (2009). Sources and deposition of reactive gaseous mercury in the marine atmosphere. Atmospheric Environment, 43(14): 2278–2285

    Article  CAS  Google Scholar 

  • Hu Y, Cheng H (2016). Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations. Environmental Pollution, 218: 1209–1221

    Article  CAS  Google Scholar 

  • Huang M, Deng S, Dong H, Dai W, Pang J, Wang X (2016). Impacts of atmospheric mercury deposition on human multimedia exposure: Projection from observations in the Pearl River Delta Region, South China. Environmental Science & Technology, 50(19): 10625–10634

    Article  CAS  Google Scholar 

  • Keeler G J, Landis M S, Norris G A, Christianson E M, Dvonch J T (2006). Sources of mercury wet deposition in Eastern Ohio, USA. Environmental Science & Technology, 40(19): 5874–5881

    Article  CAS  Google Scholar 

  • Li Z, Xia C H, Wang X M, Xiang Y R, Xie Z Q (2011). Total gaseous mercury in Pearl River Delta region, China during 2008 winter period. Atmospheric Environment, 45(4): 834–838

    Article  CAS  Google Scholar 

  • Liang S, Xu M, Liu Z, Suh S, Zhang T (2013). Socioeconomic drivers of mercury emissions in China from 1992 to 2007. Environmental Science & Technology, 47(7): 3234–3240

    Article  CAS  Google Scholar 

  • Lin C J, Pan L, Streets D G, Shetty S K, Jang C, Feng X, Chu H W, Ho T C (2010). Estimating mercury emission outflow from East Asia using CMAQ-Hg. Atmospheric Chemistry and Physics, 10(4): 1853–1864

    Article  CAS  Google Scholar 

  • Lin C J, Shetty S K, Pan L, Pongprueksa P, Jang C, Chu H W (2012). Source attribution for mercury deposition in the contiguous United States: regional difference and seasonal variation. Journal of the Air & Waste Management Association, 62(1): 52–63

    Article  CAS  Google Scholar 

  • Lohman K, Seigneur C, Edgerton E, Jansen J (2006). Modeling mercury in power plant plumes. Environmental Science & Technology, 40 (12): 3848–3854

    Article  CAS  Google Scholar 

  • Sakata M, Marumoto K (2005). Wet and dry deposition fluxes of mercury in Japan. Atmospheric Environment, 39(17): 3139–3146

    Article  CAS  Google Scholar 

  • Selin N E, Jacob D J (2008). Seasonal and spatial patterns of mercury wet deposition in the United States: Constraints on the contribution from North American anthropogenic sources. Atmospheric Environment, 42(21): 5193–5204

    Article  CAS  Google Scholar 

  • Streets D G, Hao J M, Wu Y, Jiang J K, Chan M, Tian H Z, Feng X B (2005). Anthropogenic mercury emissions in China. Atmospheric Environment, 39(40): 7789–7806

    Article  CAS  Google Scholar 

  • Sutton M A, Burkhardt J K, Guerin D, Nemitz E, Fowler D (1998). Development of resistance models to describe measurements of bidirectional ammonia surface-atmosphere exchange. Atmospheric Environment, 32(3): 473–480

    Article  CAS  Google Scholar 

  • Tian H Z, Zhu C Y, Gao J J, Cheng K, Hao J M, Wang K, Hua S B, Wang Y, Zhou J R (2015). Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: Historical trend, spatial distribution, uncertainties, and control policies. Atmospheric Chemistry and Physics, 15(17): 10127–10147

    Article  CAS  Google Scholar 

  • Wang L, Wang S, Zhang L, Wang Y, Zhang Y, Nielsen C, McElroy M B, Hao J (2014). Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model. Environmental Pollution, 190: 166–175

    Article  CAS  Google Scholar 

  • Wang L T, Wei Z, Wei W, Fu J S, Meng C C, Ma S M (2015). Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model. Atmospheric Environment, 122: 723–736

    Article  CAS  Google Scholar 

  • Wang S B, Luo K L (2017). Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China. Atmospheric Environment, 162: 45–54

    Article  CAS  Google Scholar 

  • Wang S X, Zhang L, Wang L, Wu Q R, Wang F Y, Hao J M (2014). A review of atmospheric mercury emissions, pollution and control in China. Frontiers of Environmental Science & Engineering, 8(5): 631–649

    Article  CAS  Google Scholar 

  • Wang Y J, Duan Y F, Yang L G, Zhao C S, Xu Y Q (2010). Mercury speciation and emission from the coal-fired power plant filled with flue gas desulfurization equipment. Canadian Journal of Chemical Engineering, 88(5): 867–873

    CAS  Google Scholar 

  • Wesely M L, Hicks B B (2000). A review of the current status of knowledge on dry deposition. Atmospheric Environment, 34(12–14): 2261–2282

    Article  CAS  Google Scholar 

  • Wu Q, Wang S, Li G, Liang S, Lin C J, Wang Y, Cai S, Liu K, Hao J (2016). Temporal Trend and Spatial Distribution of Speciated Atmospheric Mercury Emissions in China During 1978–2014. Environmental Science & Technology, 50(24): 13428–13435

    Article  CAS  Google Scholar 

  • Wu Y, Wang S, Streets D G, Hao J, Chan M, Jiang J (2006). Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environmental Science & Technology, 40(17): 5312–5318

    Article  CAS  Google Scholar 

  • Zhang L, Wang S, Wang L, Wu Y, Duan L, Wu Q, Wang F, Yang M, Yang H, Hao J, Liu X (2015). Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environmental Science & Technology, 49(5): 3185–3194

    Article  CAS  Google Scholar 

  • Zhang X T, Siddiqi Z, Song X J, Mandiwana K L, Yousaf M, Lu J L (2012). Atmospheric dry and wet deposition of mercury in Toronto. Atmospheric Environment, 50: 60–65

    Article  CAS  Google Scholar 

  • Zhang Y, Jaegle L, van Donkelaar A, Martin R V, Holmes C D, Amos H M, Wang Q, Talbot R, Artz R, Brooks S, Luke W, Holsen T M, Felton D, Miller E K, Perry K D, Schmeltz D, Steffen A, Tordon R, Weiss-Penzias P, Zsolway R (2012). Nested-grid simulation of mercury over North America. Atmospheric Chemistry and Physics, 12(14): 6095–6111

    Article  CAS  Google Scholar 

  • Zhao Y, Zhong H, Zhang J, Nielsen C P (2015). Evaluating the effects of China’s pollution controls on inter-annual trends and uncertainties of atmospheric mercury emissions. Atmospheric Chemistry and Physics, 15(8): 4317–4337

    Article  CAS  Google Scholar 

  • Zheng J, Ou J, Mo Z, Yin S (2011). Mercury emission inventory and its spatial characteristics in the Pearl River Delta region, China. Science of the Total Environment, 412-413: 214–222

    Article  CAS  Google Scholar 

  • Zhu J, Wang T, Bieser J, Matthias V (2015). Source attribution and process analysis for atmospheric mercury in eastern China simulated by CMAQ-Hg. Atmospheric Chemistry and Physics, 15(15): 8767–8779

    Article  CAS  Google Scholar 

  • Zhu J, Wang T, Talbot R, Mao H, Yang X, Fu C, Sun J, Zhuang B, Li S, Han Y, Xie M (2014). Characteristics of atmospheric mercury deposition and size-fractionated particulate mercury in urban Nanjing, China. Atmospheric Chemistry and Physics, 14(5): 2233–2244

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science and Technology Foundation of Guangdong Province, China (No. 2016A020221001), National Research Program For Key Issues In Air Pollution Control (No. DQGG0301), The National Key Research and Development Program of China (No. 2016YFC0207606) and the Fundamental Research Funds for the Central Universities (Nos. D2160320 and D2170150).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Wang or Yun Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, L., Zhu, Y. et al. Source attribution for mercury deposition with an updated atmospheric mercury emission inventory in the Pearl River Delta Region, China. Front. Environ. Sci. Eng. 13, 2 (2019). https://doi.org/10.1007/s11783-019-1087-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-019-1087-6

Keywords

Navigation