Skip to main content
Log in

Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

A new type of Au/TiO2/reduced graphene oxide (RGO) nanocomposite was fabricated by the hydrothermal synthesis of TiO2 on graphene oxide followed by the photodeposition of Au nanoparticles. Transmission electron microscopy images showed that Au nanoparticles were loaded onto the surface of both TiO2 and RGO. Au/TiO2/RGO had a better photocatalytic activity than Au/ TiO2 for the degradation of phenol. Electrochemical measurements indicated that Au/TiO2/RGO had an improved charge transfer capability. Meanwhile, chemiluminescent analysis and electron spin resonance spectroscopy revealed that Au/TiO2/RGO displayed high production of hydrogen peroxide and hydroxyl radicals in the photocatalytic process. This high photocatalytic performance was achieved via the addition of RGO in Au/TiO2/RGO, where RGO served not only as a catalyst support to provide more sites for the deposition of Au nanoparticles but also as a collector to accept electrons from TiO2 to effectively reduce photogenerated charge recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann M R, Martin S T, Choi W, Bahnemannt D W. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96

    Article  CAS  Google Scholar 

  2. Nakata K, Fujishima A. TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169–189

    Article  CAS  Google Scholar 

  3. Wang H, Quan X, Yu H T, Chen S. Fabrication of a TiO2/carbon nanowall heterojunction and its photocatalytic ability. Carbon, 2008, 46(8): 1126–1132

    Article  CAS  Google Scholar 

  4. Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Japanese Journal of Applied Physics, 2005, 44(12): 8269–8285

    Article  CAS  Google Scholar 

  5. Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters, 2006, 6(2): 215–218

    Article  CAS  Google Scholar 

  6. Ge M, Guo C, Zhu X, Ma L, Han Z, Hu W, Wang Y. Photocatalytic degradation of methyl orange using ZnO/TiO2 composites. Frontiers of Environmental Science & Engineering, 2009, 3(3): 271–280

    Article  CAS  Google Scholar 

  7. Wang S, Wang K, Jehng J, Liu L. Preparation of TiO2/MCM-41 by plasma enhanced chemical vapor deposition method and its photocatalytic activity. Frontiers of Environmental Science & Engineering, 2012, 6(3): 304–312

    Article  CAS  Google Scholar 

  8. Tian Y, Tatsuma T. Mechanisms and applications of plasmoninduced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 2005, 127(20): 7632–7637

    Article  CAS  Google Scholar 

  9. Méndez-Medrano MG, Kowalska E, Lehoux A, Herissan A, Ohtani B, Rau S, Colbeau-Justin C, Rodríguez-López J L, Remita H. Surface modification of TiO2 with Au nanoclusters for efficient water treatment and hydrogen generation under visible light. Journal of Physical Chemistry C, 2016, 120(43): 25010–25022

    Article  Google Scholar 

  10. Golabiewska A, Malankowska A, Jarek M, Lisowski W, Nowaczyk G, Jurga S, Zaleska-Medynska A. The effect of gold shape and size on the properties and visible light-induced photoactivity of Au-TiO2. Applied Catalysis B: Environmental, 2016, 196: 27–40

    Article  CAS  Google Scholar 

  11. Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials. Nature, 2006, 442(7100): 282–286

    Article  CAS  Google Scholar 

  12. Perreault F, Fonseca de Faria A, Elimelech M. Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 2015, 44(16): 5861–5896

    Article  CAS  Google Scholar 

  13. Zhang N, Yang M Q, Liu S, Sun Y, Xu Y J. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chemical Reviews, 2015, 115(18): 10307–10377

    Article  CAS  Google Scholar 

  14. Zhang H, Lv X, Li Y, Wang Y, Li J. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2010, 4(1): 380–386

    Article  CAS  Google Scholar 

  15. Zhang N, Zhang Y, Xu Y J. Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale, 2012, 4(19): 5792–5813

    Article  CAS  Google Scholar 

  16. Tu W, Zhou Y, Zou Z. Versatile graphene-promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Advanced Functional Materials, 2013, 23(40): 4996–5008

    Article  CAS  Google Scholar 

  17. Xiang Q, Yu J, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. Journal of the American Chemical Society, 2012, 134(15): 6575–6578

    Article  CAS  Google Scholar 

  18. Liu Y, Yu H, Wang H, Chen S, Quan X, Efficient H. 2 production over Au/graphene/TiO2 induced by surface plasmon resonance of Au and band-gap excitation of TiO2. Materials Research Bulletin, 2014, 59: 111–116

    Article  CAS  Google Scholar 

  19. Yuan J, Shiller A M. Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection. Analytical Chemistry, 1999, 71(10): 1975–1980

    Article  CAS  Google Scholar 

  20. Wang H, Zhang X, Su Y, Yu H, Chen S, Quan X, Yang F. Photoelectrocatalytic oxidation of aqueous ammonia using TiO2 nanotube arrays. Applied Surface Science, 2014, 311: 851–857

    Article  CAS  Google Scholar 

  21. Kotal M, Bhowmick A K. Multifunctional hybrid materials based on carbon nanotube chemically bonded to reduced graphene oxide. Journal of Physical Chemistry C, 2013, 117(48): 25865–25875

    Article  CAS  Google Scholar 

  22. Wang H, Su Y, Zhao H, Yu H, Chen S, Zhang Y, Quan X. Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4. Environmental Science & Technology, 2014, 48(20): 11984–11990

    Article  CAS  Google Scholar 

  23. Yu H, Ma B, Chen S, Zhao Q, Quan X, Afzal S. Electrocatalytic debromination of BDE-47 at palladized graphene electrode. Frontiers of Environmental Science & Engineering, 2014, 8(2): 180–187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Fig. 7 The formation of H2O2 for no photocatalyst, TiO2, Au/ TiO2, and Au/TiO2/RGO under UV light (0.75 mW·cm–2) irradiation for 4 h Fig. 8 ESR spectra of TiO2, Au/TiO2, and Au/TiO2/RGO both in the dark and under UV light irradiation Fenghe Lv et al. An Au/TiO2/RGO nanocomposite for photocatalysis 5 Foundation of Liaoning Province of China (No. 2014020149), the Scientific Research Project of Liaoning Provincial Department of Education (No. L201603) and the Open Foundation of Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants (No. PY16005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Wang or Yan Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, F., Wang, H., Li, Z. et al. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite. Front. Environ. Sci. Eng. 12, 4 (2018). https://doi.org/10.1007/s11783-017-0977-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0977-8

Keywords

Navigation