Skip to main content
Log in

Removal of lead from aqueous solution by hydroxyapatite/manganese dioxide composite

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

A novel composite adsorbent, hydroxyapatite/ manganese dioxide (HAp/MnO2), has been developed for the purpose of removing lead ions from aqueous solutions. The combination of HAp with MnO2 is meant to increase its adsorption capacity. Various factors that may affect the adsorption efficiency, including solution pH, coexistent substances such as humic acid and competing cations (Ca2+, Mg2+), initial solute concentration, and the duration of the reaction, have been investigated. Using this composite adsorbent, solution pH and coexistent calcium or magnesium cations were found to have no significant influence on the removal of lead ions under the experimental conditions. The adsorption equilibrium was described well by the Langmuir isotherm model, and the calculated maximum adsorption capacity was 769 mg·g−1. The sorption processes obeyed the pseudo-second-order kinetics model. The experimental results indicate that HAp/MnO2 composite may be an effective adsorbent for the removal of lead ions from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vilensky M Y, Berkowitz B, Warshawsky A. In situ remediation of groundwater contaminated by heavy- and transition-metal ions by selective ion-exchange methods. Environmental Science & Technology, 2002, 36(8): 1851–1855

    Article  CAS  Google Scholar 

  2. Rivera-Utrilla J, Sánchez-Polo M, Gómez-Serrano V, Alvarez P M, Alvim-Ferraz M C M, Dias J M. Activated carbon modifications to enhance its water treatment applications. An overview. Journal of Hazardous Materials, 2011, 187(1–3): 1–23

    Article  CAS  Google Scholar 

  3. Wang S, Yu DM. Adsorption of Cd(II), Pb(II), and Ag(I) in aqueous solution on hollow chitosan microspheres. Journal of Applied Polymer Science, 2010, 118(2): 733–739

    CAS  Google Scholar 

  4. Chen Y H, Li F A. Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts. Journal of Colloid and Interface Science, 2010, 347(2): 277–281

    Article  CAS  Google Scholar 

  5. Eloussaief M, Benzina M. Efficiency of natural and acid-activated clays in the removal of Pb(II) from aqueous solutions. Journal of Hazardous Materials, 2010, 178(1–3): 753–757

    Article  CAS  Google Scholar 

  6. Hamidpour M, Kalbasi M, Afyuni M, Shariatmadari H, Holm P E, Hansen H C B. Sorption hysteresis of Cd(II) and Pb(II) on natural zeolite and bentonite. Journal of Hazardous Materials, 2010, 181(1–3): 686–691

    Article  CAS  Google Scholar 

  7. Liao D, Zheng W, Li X, Yang Q, Yue X, Guo L, Zeng G. Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste. Journal of Hazardous Materials, 2010, 177(1–3): 126–130

    Article  CAS  Google Scholar 

  8. Corami A, Mignardi S, Ferrini V. Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite. Journal of Hazardous Materials, 2007, 146(1–2): 164–170

    Article  CAS  Google Scholar 

  9. Corami A, Acapito F D, Mignardi S, Ferrini V. Removal of Cu from aqueous solutions by synthetic hydroxyapatite: EXAFS investigation. Materials Science and Engineering B, 2008, 149(2): 209–213

    Article  CAS  Google Scholar 

  10. Corami A, Mignardi S, Ferrini V. Cadmium removal from singleand multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite. Journal of Colloid and Interface Science, 2008, 317 (2): 402–408

    Article  CAS  Google Scholar 

  11. Smičiklas I, Dimović I, Mitrić M, Mitrić M. Removal of Co2+ from aqueous solutions by hydroxyapatite.Water Research, 2006, 40(12): 2267–2274

    Article  Google Scholar 

  12. Jang S H, Jeong Y G, Min B G, Lyoo WS, Lee S C. Preparation and lead ion removal property of hydroxyapatite/polyacrylamide composite hydrogels. Journal of Hazardous Materials, 2008, 159 (2-3): 294–299

    Article  CAS  Google Scholar 

  13. Jang S H, Min B G, Jeong Y G, Lyoo WS, Lee S C. Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams. Journal of Hazardous Materials, 2008, 152(3): 1285–1292

    Article  CAS  Google Scholar 

  14. Dong L J, Zhu Z L, Qiu Y L, Zhao J F. Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent. Chemical Engineering Journal, 2010, 165(3): 827–834

    Article  CAS  Google Scholar 

  15. Feng Y A, Gong J L, Zeng G M, Niu Q Y, Zhang H Y, Niu C G, Deng J H, Yan M. Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chemical Engineering Journal, 2010, 162(2): 487–494

    Article  CAS  Google Scholar 

  16. Bogya E S, Barabás R, Csavdári A, Dejeu V, Bâldea I. Hydroxyapatite modified with silica used for sorption of copper. Chemical Paper, 2009, 63(5): 568–573

    Article  CAS  Google Scholar 

  17. Liu G, Talley J W, Na C, Larson S L, Wolfe L G. Copper doping improves hydroxyapatite sorption for arsenate in simulated groundwaters. Environmental Science & Technology, 2010, 44(4): 1366–1372

    Article  CAS  Google Scholar 

  18. Tripathya S S, Bersillona J L, Gopal K. Adsorption of Cd2+ on hydrous manganese dioxide from aqueous solutions. Desalination, 2006, 194(1–3): 11–21

    Article  Google Scholar 

  19. Kanungo S B, Tripathy S S, Rajeev. Adsorption of Co, Ni, Cu, and Zn on hydrous manganese dioxide from complex electrolyte solutions resembling sea water in major ion content. Journal of Colloid and Interface Science, 2004, 269(1): 1–10

    Article  CAS  Google Scholar 

  20. Zhu Z L, Ma H M, Zhang R H, Ge Y X, Zhao J F. Removal of cadmium using MnO2 loaded D301 resin. Journal of Environmental Sciences (China), 2007, 19(6): 652–656

    Article  CAS  Google Scholar 

  21. Dong L, Zhu Z, Ma H, Qiu Y, Zhao J. Simultaneous adsorption of lead and cadmium on MnO2-loaded resin. Journal of Environmental Sciences (China), 2010, 22(2): 225–229

    Article  CAS  Google Scholar 

  22. Parida K M, Kanungo S B, Sant B R. Studies on MnO2 chemical composition, microstucture and other characteristics of some synthetic MnO2 of various crystalline modification. Electrochimica Acta, 1981, 26(3): 435–443

    Article  CAS  Google Scholar 

  23. Schwarz J A, Driscoll C T, Bhanot A K. The zero point charge of silica-alumina oxide suspensions. Journal of Colloid and Interface Science, 1984, 97(1): 55–61

    Article  CAS  Google Scholar 

  24. Meski S, Ziani S, Khireddine H, Boudboub S, Zaidi S. Factorial design analysis for sorption of zinc on hydroxyapatite. Journal of Hazardous Materials, 2011, 186(2–3): 1007–1017

    Article  CAS  Google Scholar 

  25. Shimabayashi S, Tamura C, Nakagaki M. Adsorption of mono- and divalent metal cations on hydroxyapatite in water. Chemical & Pharmaceutical Bulletin, 1981, 29(8): 2116–2122

    Article  CAS  Google Scholar 

  26. Tipping E. Cation Binding by Humic Substances. England: Cambridge University Press, 2002

    Book  Google Scholar 

  27. Wang S B, Terdkiatburana T, Tadé M O. Adsorption of Cu(II), Pb (II) and humic acid on natural zeolite tuff in single and binary systems. Separation and Purification Technology, 2008, 62(1): 64–70

    Article  CAS  Google Scholar 

  28. Terdkiatburana T, Wang S B, Tadé M O. Competition and complexation of heavy metal ions and humic acid on zeolitic MCM-22 and activated carbon. Chemical Engineering Journal, 2008, 139(3): 437–444

    Article  CAS  Google Scholar 

  29. Stötzel C, Müller F A, Reinert F, Niederdraenk F, Barralet J E, Gbureck U. Ion adsorption behaviour of hydroxyapatite with different crystallinities. Colloids and Surfaces B, 2009, 74(1): 91–95

    Article  Google Scholar 

  30. Freundlich H. Colloid and Capillary Chemistry. London: Methuen, 1926, 993

  31. Langmuir I. The constitution and fundamental properties of solid sand liquids. Part-I.Solids. Journal of the American Chemical Society, 1916, 38(11): 2221–2295

    Article  CAS  Google Scholar 

  32. Mobasherpour I, Salahi E, Pazouki M. Removal of divalent cadmium cations by means of synthetic nano crystallite hydroxyapatite. Desalination, 2011, 266(1–3): 142–148

    Article  CAS  Google Scholar 

  33. Wang C C, Juang L C, Lee C K, Hsu T C, Lee J F, Chao H P. Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. Journal of Colloid and Interface Science, 2004, 280(1): 27–35

    Article  CAS  Google Scholar 

  34. Smičiklas I, Onjia A, Raicević S, Janaćković D, Mitrić M. Factors influencing the removal of divalent cations by hydroxyapatite. Journal of Hazardous Materials, 2008, 152(2): 876–884

    Article  Google Scholar 

  35. Su Q, Pan B, Wan S, Zhang W, Lv L. Use of hydrous manganese dioxide as a potential sorbent for selective removal of lead, cadmium, and zinc ions from water. Journal of Colloid and Interface Science, 2010, 349(2): 607–612

    Article  CAS  Google Scholar 

  36. Su Q, Pan B, Pan B, Zhang Q, Zhang W, Lv L, Wang X, Wu J, Zhang Q. Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. Science of the Total Environment, 2009, 407(21): 5471–5477

    Article  CAS  Google Scholar 

  37. Phuengprasop T, Sittiwong J, Unob F. Removal of heavy metal ions by iron oxide coated sewage sludge. Journal of Hazardous Materials, 2011, 186(1): 502–507

    Article  CAS  Google Scholar 

  38. Heidari A, Younesi H, Mehraban Z. Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chemical Engineering Journal, 2009, 153(1–3): 70–79

    Article  CAS  Google Scholar 

  39. Yin H, Feng X, Qiu G, Tan W, Liu F. Characterization of Co-doped birnessites and application for removal of lead and arsenite. Journal of Hazardous Materials, 2011, 188(1–3): 341–349

    Article  CAS  Google Scholar 

  40. Ho Y S, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34(5): 451–465

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Zhu, Z., Qiu, Y. et al. Removal of lead from aqueous solution by hydroxyapatite/manganese dioxide composite. Front. Environ. Sci. Eng. 10, 28–36 (2016). https://doi.org/10.1007/s11783-014-0722-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-014-0722-5

Keywords

Navigation