Skip to main content
Log in

High sensitivity micro-displacement sensor based on fiber Bragg grating and amplification substrate

基于光纤布拉格光栅和放大基片的高灵敏度微位移传感器

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A micro-displacement sensor based on fiber Bragg grating (FBG) is proposed. The device consists of a pair of FBGs with different central wavelengths fabricated by femtosecond laser phase mask method and a metal substrate with lever structure. The displacement is amplified by lever structure and it converts into axial tension of FBG, which has a high displacement sensitivity. The amplification factors obtained by theoretical analysis and finite element simulation are 2.67 and 2.50, respectively. The experimental results show that in the range of 0–50 µm the shift of FBG center wavelength is linearly related to the displacement of measured object and displacement sensitivity reaches 121 pm/µm. In addition, the cascaded FBG is used to compensate the temperature.

摘要

提出了一种基于光纤布拉格光栅(FBG)的微位移传感器。该器件由一对中心波长不同的光纤布 拉格光栅和一个杠杆结构的金属衬底组成,布拉格光栅采用飞秒激光相位掩模法制作。被测物体的位 移由杠杆结构放大,并转换为布拉格光栅的轴向拉力。通过理论分析和有限元模拟获得的放大系数分 别为2.67 和2.5。实验结果表明,在0 至50 μm范围内,光纤光栅中心波长的偏移与被测物体的位移呈 线性关系,位移灵敏度达到121 pm/μm。级联的布拉格光栅可用于温度补偿。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TENG Chuan-xin, YU Fang-da, DENG Shi-jie, et al. Displacement sensor based on a small U-shaped single-mode fiber [J]. Sensors, 2019, 19(11): 2531. DOI: https://doi.org/10.3390/s19112531.

    Article  Google Scholar 

  2. LI Rui-ya, CHEN Yi-yang, TAN Yue-gang, et al. Sensitivity enhancement of FBG-based strain sensor [J]. Sensors, 2018, 18(5): 1607. DOI: https://doi.org/10.3390/s18051607.

    Article  Google Scholar 

  3. GUO H, XIAO G, MRAD N, et al. Fiber optic sensors for structural health monitoring of air platforms [J]. Sensors (Basel, Switzerland), 2011, 11(4): 3687–3705. DOI: https://doi.org/10.3390/s110403687.

    Article  Google Scholar 

  4. XU Dong-sheng, YIN Jian-hua, CAO Zhen-zhong, et al. A new flexible FBG sensing beam for measuring dynamic lateral displacements of soil in a shaking table test [J]. Measurement, 2013, 46(1): 200–209. DOI: https://doi.org/10.1016/j.measurement.2012.06.007.

    Article  Google Scholar 

  5. HONG Cheng-yu, ZHANG Yi-fan, YANG Yu-yao, et al. A FBG based displacement transducer for small soil deformation measurement [J]. Sensors and Actuators A: Physical, 2019, 286: 35–42. DOI: https://doi.org/10.1016/j.sna.2018.12.022.

    Article  Google Scholar 

  6. ZHU Zong-da, LIU Lu, LIU Zhi-hai, et al. High-precision micro-displacement optical-fiber sensor based on surface plasmon resonance [J]. Optics Letters, 2017, 42(10): 1982–1985. DOI: https://doi.org/10.1364/OL.42.001982.

    Article  Google Scholar 

  7. KUANG J H, CHEN Pao-chuan, CHEN Y C. Plastic optical fiber displacement sensor based on dual cycling bending [J]. Sensors, 2010, 10(11): 10198–10210. DOI: https://doi.org/10.3390/s101110198.

    Article  MathSciNet  Google Scholar 

  8. BRAVO M, BAPTISTA J M, SANTOS J L, et al. Micro-displacement sensor combined with a fiber ring interrogated by an optical time-domain reflectometer [J]. IEEE Sensors Journal, 2014, 14(3): 793–796. DOI: https://doi.org/10.1109/JSEN.2013.2288596.

    Article  Google Scholar 

  9. WEN Xiao-dong, NING Ti-gang, BAI Yan, et al. Highsensitive microdisplacement sensor based on fiber Mach — Zehnder interferometer [J]. IEEE Photonics Technology Letters, 2014, 26(23): 2395–2398. DOI: https://doi.org/10.1109/LPT.2014.2358226.

    Article  Google Scholar 

  10. SU Dan, QIAO Xue-guang, BAO Wei-jia, et al. Orientation-dependent fiber-optics displacement sensor by a grating inscription within four-mode fiber [J]. Optics & Laser Technology, 2019, 115: 229–232. DOI: https://doi.org/10.1016/j.optlastec.2019.02.020.

    Article  Google Scholar 

  11. LI Chao, NING Ti-gang, ZHANG Chan, et al. Liquid level and temperature sensor based on an asymmetrical fiber Mach-Zehnder interferometer combined with a fiber Bragg grating [J]. Optics Communications, 2016, 372: 196–200. DOI: https://doi.org/10.1016/j.optcom.2016.04.025.

    Article  Google Scholar 

  12. WANG Peng-fei, BRAMBILLA G, SEMENOVA Y, et al. A simple ultrasensitive displacement sensor based on a high bend loss single-mode fibre and a ratiometric measurement system [J]. Journal of Optics, 2011, 13(7): 075402. DOI: https://doi.org/10.1088/2040-8978/13/7/075402.

    Article  Google Scholar 

  13. NG J H, ZHOU Xiao-qun, YANG Xiu-feng, et al. A simple temperature-insensitive fiber Bragg grating displacement sensor [J]. Optics Communications, 2007, 273(2): 398–401. DOI: https://doi.org/10.1016/j.optcom.2007.01.040.

    Article  Google Scholar 

  14. SHEN Chang-yu, ZHONG Chuan. Novel temperature-insensitive fiber Bragg grating sensor for displacement measurement [J]. Sensors and Actuators A: Physical, 2011, 170(1–2): 51–54. DOI: https://doi.org/10.1016/j.sna.2011.05.030.

    Article  Google Scholar 

  15. ZHONG Chuan, SHEN Chang-yu, CHU Jin-lei, et al. A displacement sensor based on a temperature-insensitive double trapezoidal structure with fiber Bragg grating [J]. IEEE Sensors Journal, 2012, 12(5): 1280–1283. DOI: https://doi.org/10.1109/JSEN.2011.2169665.

    Article  Google Scholar 

  16. TAO Si-cong, DONG Xiao-peng, LAI Bo-wen. Temperature-insensitive fiber Bragg grating displacement sensor based on a thin-wall ring [J]. Optics Communications, 2016, 372: 44–48. DOI: https://doi.org/10.1016/j.optcom.2016.03.092.

    Article  Google Scholar 

  17. DONG Xin-yong, YANG Xiu-feng, ZHAO Chun-Liu, et al. A novel temperature-insensitive fiber Bragg grating sensor for displacement measurement [J]. Smart Materials and Structures, 2005, 2(14): N7.

    Article  Google Scholar 

  18. JIANG Qi, HU De-bo. Microdisplacement sensor based on tilted fiber Bragg grating transversal load effect [J]. IEEE Sensors Journal, 2011, 11(9): 1776–1779. DOI: https://doi.org/10.1109/JSEN.2010.2103399.

    Article  Google Scholar 

  19. JIANG Ming, CUI Liu-zhu, LIU Rong. Temperature insensitive fiber optical displacement sensors based on double fiber Bragg gratings [J]. Microwave and Optical Technology Letters, 2014, 56(2): 304–306. DOI: https://doi.org/10.1002/mop.28052.

    Article  Google Scholar 

  20. DONG Xin-yong, LIU Yun-qi, LIU Zhi-guo, et al. Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor [J]. Optics Communications, 2001, 192(3–6): 213–217. DOI: https://doi.org/10.1016/S0030-4018(01)01157-9.

    Article  Google Scholar 

  21. LI Tian-liang, REN Hong-liang. A hybrid FBG displacement and force sensor with a suspended and bent optical fiber configuration [J]. Sensors and Actuators A: Physical, 2017, 268: 117–125. DOI: https://doi.org/10.1016/j.sna.2017.11.032.

    Article  Google Scholar 

  22. KIM K T, KIM D G. Temperature-compensative displacement sensor based on a pair of fiber bragg gratings attached to a metal band [J]. Journal of Sensor Science and Technology, 2018, 27(2): 82–85. DOI: https://doi.org/10.5369/JSST.2018.27.2.82.

    Google Scholar 

  23. SUN Xiao-yan, ZENG Li, DU Hai-feng, et al. Phase-shifted gratings fabricated with femtosecond laser by overlapped two types of fiber Bragg gratings [J]. Optics & Laser Technology, 2020, 124: 105969. DOI: https://doi.org/10.1016/j.optlastec.2019.105969.

    Article  Google Scholar 

  24. HALSTUCH A, ISHAAYA A A. Strain-assisted femtosecond inscription of phase-shifted gratings [J]. Optics Letters, 2018, 43(16): 3893–3896. DOI: https://doi.org/10.1364/OL.43.003893.

    Article  Google Scholar 

Download references

Funding

Projects(51875585, 51875584, 51935013) supported by the National Natural Science Foundation of China; Project (2020JJ4247) supported by the Natural Science Foundation of Hunan Province, China; Project(ZHD202001) supported by the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-yan Sun  (孙小燕).

Additional information

Contributors

ZENG Li provided the concept, performed the experiment and edited the draft of manuscript. SUN Xiao-yan performed simulation analysis, experimental data processing and manuscript modification. HU You-wang provided the visualization, supervision and funding acquisition. DUAN Ji-an provided the project administration and funding acquisition.

Conflict of interest

ZENG Li, SUN Xiao-yan, HU You-wang, and Duan Ji-an declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Sun, Xy., Hu, Yw. et al. High sensitivity micro-displacement sensor based on fiber Bragg grating and amplification substrate. J. Cent. South Univ. 29, 3361–3367 (2022). https://doi.org/10.1007/s11771-022-5161-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5161-z

Key words

关键词

Navigation