Skip to main content
Log in

Pd-M-TiO2 (M=Mn, Cu, Ce and Fe) as passive NOx adsorber (PNA) at low temperature

Pd-M-TiO2 (M=Mn,Cu,Ce and Fe)催化剂的低温氮氧化物吸附性能

  • The 2nd World Congress on Internal Combustion Engines
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A series of transition metal Mn, Cu, Ce and Fe were loaded on TiO2 by sol-gel method with noble metal Pd as promotor for the application of passive NOx absorber. Experiments on adsorption and desorption of NOx were conducted and characterization methods such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and in situ Fourier transform infrared spectroscopy (in situ DRIFTS) were involved. The experimental results show that Mn-contained catalysts, Mn-Ti and Pd-Mn-Ti, performed excellent NOx adsorbing ability and appropriate desorption temperature window. On the other hand, Ce- and Cu-contained samples were not suitable for the purpose of PNA. In addition to the low adsorption capacity, these two series of catalysts released massive amount of NO below 150 °C. Characterization results indicated that Pd was highly dispersed on all catalysts. The loading of Pd lowered not only the valence states of transition metals but surface oxygen percentage as well. From in situ DRIFTS tests, the Pd had little influence on the types of adsorbed substances for Mn, Ce and Cu series. However, the storage forms of NOx were obviously different on Pd-Fe-Ti and Fe-Ti.

摘要

本文采用溶胶-凝胶法制备了以TiO2为载体,Mn、Cu、Ce、Fe 为主要活性成分,贵金属Pd为促 进组分的一系列催化剂, 并将其用于氮氧化物的吸附(PNA)。采用XRD、XPS、TEM 以及原位 DRIFTS 等手段对催化剂进行表征。NOx吸脱附试验结果表明,含Mn催化剂(Pd-Mn-Ti 以及Mn-Ti) 有较强的NOx吸附能力且具有合适的脱附温度窗口。而含Ce、Cu 催化剂不适合作低温NOx吸附催化 剂,NOx的吸附量较低,且在随后的程序升温脱附试验中,低于150 °C即有大量NO脱附,不利于在 下游SCR催化剂进行进一步反应。XRD和TEM结果表明,贵金属Pd 在催化剂表面分散较好。XPS结 果显示,负载Pd 以后Mn、Cu、Ce、Fe 这四种金属的价态都有降低,并同时都伴随有表面氧浓度降 低。由此可见,元素价态和表面氧浓度并非是影响NOx吸附性能的主要因素。从原位DRIFTS 结果可 以看出,Pd对于氮氧化物在含Mn、Cu、Ce催化剂表面吸附形式的影响较小,但对于NOx在含Fe 催化 剂上的吸附形式和吸附量都有着显著影响,可推测Pd-Fe 之间有着较强的相互作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TANG Wei-yong, SIANI A, CHEN F, et al. On developing advanced catalysts systems to meet China new regulations [C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2019. DOI: https://doi.org/10.4271/2019-01-0978.

    Book  Google Scholar 

  2. VALVERDE MORALES V, CLAIROTTE M, PAVLOVIC J, et al. On-road emissions of euro 6d-TEMP vehicles: Consequences of the entry into force of the RDE regulation in Europe [C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. DOI: https://doi.org/10.4271/2020-01-2219.

    Google Scholar 

  3. YANG Gang, ZHAO Hai-tao, LUO Xiang, et al. Promotion effect and mechanism of the addition of Mo on the enhanced low temperature SCR of NOx by NH3 over MnOx/γ -Al2O3 catalysts [J]. Applied Catalysis B: Environmental, 2019, 245: 743–752. DOI: https://doi.org/10.1016/j.apcatb.2018.12.080.

    Article  Google Scholar 

  4. LIU Chang, SHI Jian-wen, GAO Chen, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review [J]. Applied Catalysis A: General, 2016, 522: 54–69. DOI: https://doi.org/10.1016/j.apcata.2016.04.023.

    Article  Google Scholar 

  5. GU Yun-tao, EPLING W S. Passive NOx adsorber: An overview of catalyst performance and reaction chemistry [J]. Applied Catalysis A: General, 2019, 570: 1–14. DOI: https://doi.org/10.1016/j.apcata.2018.10.036

    Article  Google Scholar 

  6. LEE J, THEIS J R, KYRIAKIDOU E A. Vehicle emissions trapping materials: Successes, challenges, and the path forward [J]. Applied Catalysis B: Environmental, 2019, 243: 397–414. DOI: https://doi.org/10.1016/j.apcatb.2018.10.069.

    Article  Google Scholar 

  7. RYOU Y, LEE J, LEE H, et al. Effect of various activation conditions on the low temperature NO adsorption performance of Pd/SSZ-13 passive NOx adsorber [J]. Catalysis Today, 2019, 320: 175–180. DOI: https://doi.org/10.1016/j.cattod.2017.11.030.

    Article  Google Scholar 

  8. RYOU Y, LEE J, KIM Y, et al. Effect of reduction treatments (H2 vs. CO) on the NO adsorption ability and the physicochemical properties of Pd/SSZ-13 passive NOx adsorber for cold start application [J]. Applied Catalysis A: General, 2019, 569: 28–34. DOI: https://doi.org/10.1016/j.apcata.2018.10.016.

    Article  Google Scholar 

  9. LEE J, RYOU Y, CHO S J, et al. Investigation of the active sites and optimum Pd/Al of Pd/ZSM-5 passive NO adsorbers for the cold-start application: Evidence of isolated-Pd species obtained after a high-temperature thermal treatment [J]. Applied Catalysis B: Environmental, 2018, 226: 71–82. DOI: https://doi.org/10.1016/j.apcatb.2017.12.031.

    Article  Google Scholar 

  10. KHIVANTSEV K, GAO Feng, KOVARIK L, et al. Molecular level understanding of how oxygen and carbon monoxide improve NOx storage in palladium/SSZ-13 passive NOx adsorbers: The role of NO+ and Pd(II)(CO)(NO) species [J]. The Journal of Physical Chemistry C, 2018, 122(20): 10820–10827. DOI: https://doi.org/10.1021/acs.jpcc.8b01007.

    Article  Google Scholar 

  11. ZHENG Yang, KOVARIK L, ENGELHARD M H, et al. Low-temperature Pd/zeolite passive NOx adsorbers: Structure, performance, and adsorption chemistry [J]. The Journal of Physical Chemistry C, 2017, 121(29): 15793–15803. DOI: https://doi.org/10.1021/acs.jpc

    Article  Google Scholar 

  12. RYOU Y, LEE J, CHO S J, et al. Activation of Pd/SSZ-13 catalyst by hydrothermal aging treatment in passive NO adsorption performance at low temperature for cold start application [J]. Applied Catalysis B: Environmental, 2017, 212: 140–149. DOI: https://doi.org/10.1016/j.apcatb.2017.04.077.

    Article  Google Scholar 

  13. JI Ya-ying, BAI Shu-li, CROCKER M. Al2O3-based passive NOx adsorbers for low temperature applications [J]. Applied Catalysis B: Environmental, 2015, 170–171: 283–292. DOI: https://doi.org/10.1016/j.apcatb.2015.01.025.

    Article  Google Scholar 

  14. RYOU Y, LEE J, LEE H, et al. Low temperature NO adsorption over hydrothermally aged Pd/CeO2 for cold start application [J]. Catalysis Today, 2018, 307: 93–101. DOI: https://doi.org/10.1016/j.cattod.2017.02.025.

    Article  Google Scholar 

  15. JI Ya-ying, XU Dong-yan, BAI Shu-li, et al. Pt- and Pd-promoted CeO2 — ZrO2 for passive NOx adsorber applications [J]. Industrial & Engineering Chemistry Research, 2017, 56(1): 111–125. DOI: https://doi.org/10.1021/acs.iecr.6b03793.

    Article  Google Scholar 

  16. RYOU Y, LEE J, LEE H, et al. Effect of sulfur aging and regeneration on low temperature NO adsorption over hydrothermally treated Pd/CeO2 and Pd/Ce0.58Zr0.42O2 catalysts [J]. Catalysis Today, 2017, 297: 53–59. DOI: https://doi.org/10.1016/j.cattod.2017.06.035.

    Article  Google Scholar 

  17. ZHANG Shen-gen, ZHANG Bo-lin, LIU Bo, et al. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: Reaction mechanism and catalyst deactivation [J]. RSC Advances, 2017, 7(42): 26226–26242. DOI: https://doi.org/10.1039/c7ra03387g.

    Article  Google Scholar 

  18. JI Ya-ying, XU Dong-yan, CROCKER M, et al. Mn-based mixed oxides for low temperature NOx adsorber applications [J]. Applied Catalysis A: General, 2018, 567: 90–101. DOI: https://doi.org/10.1016/j.apcata.2018.09.006.

    Article  Google Scholar 

  19. JIANG Qiu-ren, WANG Chen, SHEN Mei-qing, et al. The first non-precious metal passive NOx adsorber for cold-start applications [J]. Catalysis Communications, 2019, 125: 103–107. DOI: https://doi.org/10.1016/j.catcom.2019.04.004.

    Article  Google Scholar 

  20. WU Guo-hao, CHEN Bing-bing, BAI Zhi-feng, et al. Cobalt oxide with flake-like morphology as efficient passive NOx adsorber [J]. Catalysis Communications, 2021, 149: 106203. DOI: https://doi.org/10.1016/j.catcom.2020.106203.

    Article  Google Scholar 

  21. JIANG Bo-qiong, LIU Yue, WU Zhong-biao. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods [J]. Journal of Hazardous Materials, 2009, 162(2–3): 1249–1254. DOI: https://doi.org/10.1016/j.jhazmat.2008.06.013

    Article  Google Scholar 

  22. MA Shi-bo, TAN Huan-sheng, LI Yu-shi, et al. Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0.02Fe0.2 CeyTi1−yOx (y=0.1, 0.2, 0.3) catalysts [J]. Chemosphere, 2020, 243: 125309. DOI: https://doi.org/10.1016/j.chemosphere.2019.125309.

    Article  Google Scholar 

  23. LI Yu-shi, LENG Xue-song, MA Shi-bo, et al. Effects of Mo addition on the NH3-SCR of NO reaction over MoaMnTi10Ox (a=0.2, 0.4, 0.6 and 0.8): Synergistic action between redox and acidity [J]. Catalysis Today, 2020, 339: 254–264. DOI: https://doi.org/10.1016/j.cattod.2019.03.048.

    Article  Google Scholar 

  24. MA Shi-bo, ZHAO Xiao-yu, LI Yu-shi, et al. Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiOx (x=0.01, 0.02, 0.03) catalysts for NH3-SCR of NO [J]. Applied Catalysis B: Environmental, 2019, 248: 226–238. DOI: https://doi.org/10.1016/j.apcatb.2019.02.015.

    Article  Google Scholar 

  25. ZHAO Le-le, ZHANG Zhi-ping, LI Yu-shi, et al. Synthesis of CeaMnOx hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion [J]. Applied Catalysis B: Environmental, 2019, 245: 502–512. DOI: https://doi.org/10.1016/j.apcatb.2019.01.005.

    Article  Google Scholar 

  26. XIE Shang-zhi, LI Lu-lu, JIN Li-jian, et al. Low temperature high activity of M (M=Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism [J]. Applied Surface Science, 2020, 515: 146014. DOI: https://doi.org/10.1016/j.apsusc.2020.146014.

    Article  Google Scholar 

  27. ZHANG Ya-ping, LI Guo-bo, WU Peng, et al. Effect of SO2 on the low-temperature denitrification performance of Ho-modified Mn/Ti catalyst [J]. Chemical Engineering Journal, 2020, 400: 122597. DOI: https://doi.org/10.1016/j.cej.2019.122597.

    Article  Google Scholar 

  28. YAO Xiao-jiang, KONG Ting-ting, YU Shuo-han, et al. Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature [J]. Applied Surface Science, 2017, 402: 208–217. DOI: https://doi.org/10.1016/j.apsusc.2017.01.081

    Article  Google Scholar 

  29. KHAN M N, HAN Lu-peng, WANG Peng-lu, et al. SO2tolerant NOx reduction over ceria-based catalysts: Shielding effects of hollandite Mn-Ti oxides [J]. Chemical Engineering Journal, 2020, 397: 125535. DOI: https://doi.org/10.1016/j.cej.2020.125535.

    Article  Google Scholar 

  30. LIU Xue-song, YU Qi-fan, CHEN Hong-feng, et al. The promoting effect of S-doping on the NH3-SCR performance of MnOx/TiO2 catalyst [J]. Applied Surface Science, 2020, 508: 144694. DOI: https://doi.org/10.1016/j.apsusc.2019.144694.

    Article  Google Scholar 

  31. YU Yan-ke, CHEN Chang-wei, MA Mu-di, et al. SO2 promoted in situ recovery of thermally deactivated Fe2(SO4)3/TiO2 NH3-SCR catalysts: From experimental work to theoretical study [J]. Chemical Engineering Journal, 2019, 361: 820–829. DOI: https://doi.org/10.1016/j.cej.2018.12.149.

    Article  Google Scholar 

  32. JI Ya-ying, BAI Shu-li, XU Dong-yan, et al. Pd-promoted WO3ZrO2 for low temperature NOx storage [J]. Applied Catalysis B: Environmental, 2020, 264: 118499. DOI: https://doi.org/10.1016/j.apcatb.2019.118499.

    Article  Google Scholar 

  33. ZHANG Yi-yang, ZENG Hui, JIA Bin, et al. Selective catalytic reduction of NOx by H2 over a novel Pd/FeTi catalyst [J]. Catalysis Today, 2021, 360: 213–219. DOI: https://doi.org/10.1016/j.cattod.2020.05.042.

    Article  Google Scholar 

  34. LI Xian-sheng, LI Ke-zhi, PENG Yue, et al. Interaction of phosphorus with a FeTiOx catalyst for selective catalytic reduction of NOx with NH3: Influence on surface acidity and SCR mechanism [J]. Chemical Engineering Journal, 2018, 347: 173–183. DOI: https://doi.org/10.1016/j.cej.2018.04.035.

    Article  Google Scholar 

  35. YANG Shi-jian, QI Fei-hong, XIONG Shang-chao, et al. MnOx supported on Fe-Ti spinel: A novel Mn based low temperature SCR catalyst with a high N2 selectivity [J]. Applied Catalysis B: Environmental, 2016, 181: 570–580. DOI: https://doi.org/10.1016/j.apcatb.2015.08.023.

    Article  Google Scholar 

  36. ZHANG Hong-liang, DING Long, LONG Hong-ming, et al. Influence of CeO2 loading on structure and catalytic activity for NH3-SCR over TiO2-supported CeO2 [J]. Journal of Rare Earths, 2020, 38(8): 883–890. DOI: https://doi.org/10.1016/j.jre.2020.01.005.

    Article  Google Scholar 

  37. XIONG Shang-chao, PENG Yue, WANG Dong, et al. The role of the Cu dopant on a Mn3O4 spinel SCR catalyst: Improvement of low-temperature activity and sulfur resistance [J]. Chemical Engineering Journal, 2020, 387: 124090. DOI: https://doi.org/10.1016/j.cej.2020.124090

    Article  Google Scholar 

  38. WANG Zhong-yi, GUO Rui-tang, SHI Xu, et al. The enhanced performance of Sb-modified Cu/TiO2 catalyst for selective catalytic reduction of NOx with NH3 [J]. Applied Surface Science, 2019, 475: 334–341. DOI: https://doi.org/10.1016/j.apsusc.2018.12.281.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WANG Yi-nan conducted the experiments and wrote the draft of manuscript. ZHAO Xu-teng revised the manuscript. ZHENG Zu-wei, CHEN Ting, JIANG Han and ZHANG Yi-ran provided the concept. CAO Hong-lin, LIN He and ZHAN Reggie provided funding.

Corresponding author

Correspondence to Reggie Zhan  (湛日景).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Foundation item: Project(52106173) supported by the National Natural Science Foundation of China; Project(2020TQ0187) supported by the Postdoctoral Research Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yn., Zhao, Xt., Zheng, Zw. et al. Pd-M-TiO2 (M=Mn, Cu, Ce and Fe) as passive NOx adsorber (PNA) at low temperature. J. Cent. South Univ. 29, 2253–2265 (2022). https://doi.org/10.1007/s11771-022-5083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5083-9

Key words

关键词

Navigation