Skip to main content
Log in

Optical and electrical properties of room temperature prepared α-IGZO thin films using an In2Ga2ZnO7 ceramic target

使用In2Ga2ZnO7陶瓷靶材制备& alpha; -IGZO 薄膜的光电性能研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this study, a high-purity In2Ga2ZnO7 ceramic target was used to deposit indium gallium zinc oxide (IGZO) films by RF magnetron sputtering technology. The microstructure, growth state, optical and electrical properties of the IGZO films were studied. The results showed that the surface of the IGZO film was uniform and smooth at room temperature. As the substrate temperature increased, the surface roughness of the film gradually increased. From room temperature to 300 ° C, all the films maintained amorphous phase and good thermal stabilities. Moreover, the transmission in the visible region decreased from 91.93% to 91.08%, and the band gap slightly decreased from 3.79 to 3.76 eV. The characterization of the film via atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS) demonstrated that the film prepared at room temperature exhibited the lowest surface roughness and the largest content of oxygen vacancies. With the rise in temperature, the non-homogeneous particle distribution, increase in the surface roughness, and reduction in the number of oxygen vacancies resulted in lower performance of the α-IGZO film. Comprehensive analysis showed that the best optical and electrical properties can be obtained by depositing IGZO films at room temperature, which indicates their potential applications in flexible substrates.

摘要

本文采用高纯度In2Ga2ZnO7陶瓷靶材通过射频磁控溅射技术沉积铟镓锌氧化物(IGZO)薄膜. 研究了IGZO 薄膜的微观结构、生长状态、光学和电学性能. 结果表明, 在室温下制备的IGZO 薄膜表面均匀且光滑. 随着衬底温度的升高, 薄膜的表面粗糙度逐渐增大. 从室温升至300 & deg; C, 所有制备的IGZO 薄膜均是非晶态的, 并具有良好的热稳定性. 此外, 可见光区域的透过率从91.93% 下降到91.08%, 光学带隙略有下降(3.79~3.76 eV). 通过原子力显微镜(AFM)和X 射线光电子能谱(XPS)对不同温度下制备的IGZO 薄膜的表征, 可知在室温下制备的薄膜的表面粗糙度最小, 并且氧空位含量最高. 随着温度的升高, 不均匀的颗粒分布, 表面粗糙度的增加, 以及氧空位的减少导致了& alpha; -IGZO 薄膜的性能降低. 综合分析可知, 在室温下沉积的IGZO 薄膜可以获得最佳的光学和电学性能, 同时也预示了其在柔性衬底上的应用潜力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHEN Jiang-bo, WANG Li, SU Xue-qiong, et al. Pulsed laser deposited InGaZnO thin film on silica glass [J]. Journal of Non-Crystalline Solids, 2012, 358(17): 2466–2469. DOI: https://doi.org/10.1016/j.jnoncrysol.2011.12.039.

    Article  Google Scholar 

  2. CHEN X F, HE G, GAO J, et al. Substrate temperature dependent structural, optical and electrical properties of amorphous InGaZnO thin films [J]. Journal of Alloys and Compounds, 2015, 632: 533–539. DOI: https://doi.org/10.1016/j.jallcom.2015.01.143.

    Article  Google Scholar 

  3. CHEN Jie, ZHONG Jing-ming, LUO Wen, et al. Study on powder preparation of IGZO target and its effect on sintering [J]. Journal of Alloys and Compounds, 2019, 800: 468–477. DOI: https://doi.org/10.1016/j.jallcom.2019.06.031.

    Article  Google Scholar 

  4. NOMURA K, KAMIYA T, OHTA H, et al. Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films [J]. Applied Physics Letters, 2004, 85(11): 1993–1995. DOI: https://doi.org/10.1063/1.1788897.

    Article  Google Scholar 

  5. QI Chao, CHEN Jie, SUN Ben-shuang, et al. Microstructure and phase transformation of IGZO targets with different stoichiometry during sintering [J]. Ceramics International, 2020, 46(8): 10568–10577. DOI: https://doi.org/10.1016/j.ceramint.2020.01.060.

    Article  Google Scholar 

  6. CUI Bo-ya, ZENG Li, KEANE D, et al. Thermal conductivity comparison of indium gallium zinc oxide thin films: Dependence on temperature, crystallinity, and porosity [J]. The Journal of Physical Chemistry C, 2016, 120(14): 7467–7475. DOI: https://doi.org/10.1021/acs.jpcc.5b12105.

    Article  Google Scholar 

  7. SAHOO A K, WU G M. Effects of argon flow rate on electrical properties of amorphous indium gallium zinc oxide thin-film transistors [J]. Thin Solid Films, 2016, 605: 129–135. DOI: https://doi.org/10.1016/j.tsf.2015.12.016.

    Article  Google Scholar 

  8. NOMURA K, OHTA H, TAKAGI A, et al. Roomtemperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors [J]. Nature, 2004, 432(7016): 488–492. DOI: https://doi.org/10.1038/nature03090.

    Article  Google Scholar 

  9. CHO M H, SEOL H, SONG A, et al. Comparative study on performance of IGZO transistors with sputtered and atomic layer deposited channel layer [J]. IEEE Transactions on Electron Devices, 2019, 66(4): 1783–1788. DOI: https://doi.org/10.1109/TED.2019.2899586.

    Article  Google Scholar 

  10. PARK H P, KIM S W, SHIN J W, et al. Effects of the compositional ratios of sputtering target on the device performance and instability in amorphous InGaZnO thin film transistors [J]. Microelectronics Reliability, 2018, 88–90: 873–877. DOI: https://doi.org/10.1016/j.microrel.2018.06.052.

    Article  Google Scholar 

  11. REZEK J, HOUŠKA J, PROCHÁZKA M, et al. In-Ga-Zn-O thin films with tunable optical and electrical properties prepared by high-power impulse magnetron sputtering [J]. Thin Solid Films, 2018, 658: 27–32. DOI: https://doi.org/10.1016/j.tsf.2018.05.029.

    Article  Google Scholar 

  12. SU Xue-qiong, WANG Li, LU Yi, et al. The effect of thermal annealing on (In2O3)0.75(Ga2O3)0.1(ZnO)0.15 thin films with high mobility [J]. Vacuum, 2014, 107: 191–194 DOI: https://doi.org/10.1016/j.vacuum.2014.01.025.

    Article  Google Scholar 

  13. SHEN Y K, LIU Z, WANG X L, et al. Synthesis of IGZO ink and study of ink-jet printed IGZO thin films with different Ga concentrations [J]. Solid-State Electronics, 2017, 138: 108–112. DOI: https://doi.org/10.1016/j.sse.2017.10.006.

    Article  Google Scholar 

  14. TSAY C Y, HUANG T T. Improvement of physical properties of IGZO thin films prepared by excimer laser annealing of sol-gel derived precursor films [J]. Materials Chemistry and Physics, 2013, 140(1): 365–372. DOI: https://doi.org/10.1016/j.matchemphys.2013.03.051.

    Article  Google Scholar 

  15. WU C H, CHANG K M, HUANG S H, et al. Characteristics of IGZO TFT prepared by atmospheric pressure plasma jet using PE-ALD Al2O3 gate dielectric [J]. IEEE Electron Device Letters, 2012, 33(4): 552–554. DOI: https://doi.org/10.1109/led.2012.2185774.

    Article  Google Scholar 

  16. DHAR A, ALFORD T L. Controlled microwave processing of IGZO thin films for improved optical and electrical properties [J]. JOM, 2015, 67(7): 1624–1628. DOI: https://doi.org/10.1007/s11837-015-1453-1.

    Article  Google Scholar 

  17. LEE Y S, YEN T W, LIN C I, et al. Electrical characteristics of amorphous In-Ga-Zn-O thin-film transistors prepared by radio frequency magnetron sputtering with varying oxygen flows [J]. Displays, 2014, 35(3): 165–170. DOI: https://doi.org/10.1016/j.displa.2014.05.005.

    Article  Google Scholar 

  18. ZHU Bin, ROACH K E, LYNCH D M, et al. Effects of RF sputtering parameters on C-axis aligned crystalline (CAAC) InGaZnO4 films using design of experiment (DOE) approach [J]. ECS Journal of Solid State Science and Technology, 2016, 5(6): P368–P375. DOI: https://doi.org/10.1149/2.0361606jss.

    Article  Google Scholar 

  19. MOON M R, NA S, JEON H, et al. The effects of a combined thermal treatment of substrate heating and post-annealing on the microstructure of InGaZnO films and the device performance of their thin film transistors [J]. Surface and Interface Analysis, 2012, 44(11, 12): 1431–1435. DOI: https://doi.org/10.1002/sia.4968.

    Article  Google Scholar 

  20. TAKENAKA K, ENDO M, UCHIDA G, et al. Influence of deposition condition on electrical properties of α-IGZO films deposited by plasma-enhanced reactive sputtering [J]. Journal of Alloys and Compounds, 2019, 772: 642–649. DOI: https://doi.org/10.1016/j.jallcom.2018.09.143.

    Article  Google Scholar 

  21. XU Wei-dong, JIANG Jian-feng, XU San-jin, et al. Effect of substrate temperature on sputtered indium-aluminum-zinc oxide films and thin film transistors [J]. Journal of Alloys and Compounds, 2019, 791: 773–778. DOI: https://doi.org/10.1016/j.jallcom.2019.03.245.

    Article  Google Scholar 

  22. DU Qian-qian, WANG Wen-jun, LI Shu-hong, et al. Effects of substrate temperature on the structural, optical and resistive switching properties of HfO2 films [J]. Thin Solid Films, 2016, 608: 21–25. DOI: https://doi.org/10.1016/j.tsf.2016.04.016.

    Article  Google Scholar 

  23. XIAO Xiang, XIE Lei, SHAO Yang, et al. Impacts of substrate heating schemes on characteristics of amorphous indium-gallium-zinc-oxide (α-IGZO) TFTs fabricated on flexible substrates [C]// 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology. Guilin, China: IEEE, 2014: 1–3. DOI: https://doi.org/10.1109/ICSICT.2014.7021449.

    Google Scholar 

  24. KACZMARSKI J, BOLL T, BORYSIEWICZ M A, et al. Controlling In-Ga-Zn-O thin films transport properties through density changes [J]. Thin Solid Films, 2016, 608: 57–61. DOI: https://doi.org/10.1016/j.tsf.2016.04.012.

    Article  Google Scholar 

  25. ZHAO Yan, JIANG Yi-jian, FANG Yan. The influence of substrate temperature on ZnO thin films prepared by PLD technique [J]. Journal of Crystal Growth, 2007, 307(2): 278–282. DOI: https://doi.org/10.1016/j.jcrysgro.2007.07.025.

    Article  Google Scholar 

  26. KANG M S, CHO W J. High-performance amorphous indium gallium zinc oxide thin-film transistors with Sol-gel processed gate dielectric and channel layer fabricated using microwave irradiation [J]. Current Applied Physics, 2018, 18(9): 1080–1086. DOI: https://doi.org/10.1016/j.cap.2018.06.003.

    Article  Google Scholar 

  27. LI Ling, XUE Tao, SONG Zhong-xiao, et al. Effect of sputtering pressure on surface roughness, oxygen vacancy and electrical properties of α-IGZO thin films [J]. Rare Metal Materials and Engineering, 2016, 45(8): 1992–1996. DOI: https://doi.org/10.1016/S1875-5372(16)30160-6.

    Article  Google Scholar 

  28. ABDESSELEM S, AIDA M S, ATTAF N, et al. Growth mechanism of sputtered amorphous silicon thin films [J]. Physica B: Condensed Matter, 2006, 373(1): 33–41. DOI: https://doi.org/10.1016/j.physb.2005.10.132.

    Article  Google Scholar 

  29. KAISER N. Review of the fundamentals of thin-film growth [J]. Applied Optics, 2002, 41(16): 3053–3060. DOI: https://doi.org/10.1364/ao.41.003053.

    Article  Google Scholar 

  30. KHACHATRYAN H, LEE S N, KIM K B, et al. Al thin film: The effect of substrate type on Al film formation and morphology [J]. Journal of Physics and Chemistry of Solids, 2018, 122: 109–117. DOI: https://doi.org/10.1016/j.jpcs.2018.06.018.

    Article  Google Scholar 

  31. TAKAHASHI T, HOGA T, MIYANAGA R, et al. SrTa2O6 induced low voltage operation of InGaZnO thin-film transistors [J]. Thin Solid Films, 2018, 665: 173–178. DOI: https://doi.org/10.1016/j.tsf.2018.09.020.

    Article  Google Scholar 

  32. HUNG S C, LAM K T, YANG Cheng-fu, et al. Effect of different deposition power of In2O3 target on the characteristics of IGZO thin films using the cosputtering method [J]. International Journal of Photoenergy, 2014, 2014: 739096. DOI: https://doi.org/10.1155/2014/739096.

    Google Scholar 

  33. LI T C, HAN Chang-fu, HSIEH K C, et al. Effects of thin titanium and graphene depositions and annealing temperature on electrical, optical, and mechanical properties of IGZO/Ti/graphene/PI specimen [J]. Ceramics International, 2018, 44(6): 6573–6583. DOI: https://doi.org/10.1016/j.ceramint.2018.01.060.

    Article  Google Scholar 

  34. KIM J H, PARK E K, KIM M S, et al. Bias and illumination instability analysis of solution-processed α-InGaZnO thin-film transistors with different component ratios [J]. Thin Solid Films, 2018, 645: 154–159. DOI: https://doi.org/10.1016/j.tsf.2017.09.054.

    Article  Google Scholar 

  35. YOON S M, SEONG N J, CHOI K, et al. Effects of deposition temperature on the device characteristics of oxide thin-film transistors using In-Ga-Zn-O active channels prepared by atomic-layer deposition [J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22676–22684. DOI: https://doi.org/10.1021/acsami.7b04637.

    Article  Google Scholar 

  36. YAO Jian-ke, GONG Li, XIE Lei, et al. Comparison of the electrical and optical properties of direct current and radio frequency sputtered amorphous indium gallium zinc oxide films [J]. Thin Solid Films, 2013, 527: 21–25. DOI: https://doi.org/10.1016/j.tsf.2012.12.035.

    Article  Google Scholar 

  37. CHANG Chang-shuo, LI T C, TSAI Y C, et al. Effects of deposition method and conditions for IGZO film and thermal annealing on composite film quality, surface roughness, microstructural defects, and electrical properties of Ti/IGZO/graphene/polyimide specimens [J]. Journal of Alloys and Compounds, 2018, 768: 298–315. DOI: https://doi.org/10.1016/j.jallcom.2018.07.252.

    Article  Google Scholar 

  38. WU Jie, SHI Jun-fei, DONG Cheng-yuan, et al. Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors [J]. Journal of Semiconductors, 2014, 35(1): 014003. DOI: https://doi.org/10.1088/1674-4926/35/1/014003.

    Article  Google Scholar 

  39. YANG Shen-yong, ZHANG Cong-chun, YANG Zhuo-qing, et al. Effect of nitrogen doping temperature on the resistance stability of ITO thin films [J]. Journal of Alloys and Compounds, 2019, 778: 90–96. DOI: https://doi.org/10.1016/j.jallcom.2018.11.126.

    Article  Google Scholar 

  40. XIAO Peng, HUANG Jun-hua, DONG Ting, et al. X-ray photoelectron spectroscopy analysis of the effect of photoresist passivation on InGaZnO thin-film transistors [J]. Applied Surface Science, 2019, 471: 403–407. DOI: https://doi.org/10.1016/j.apsusc.2018.11.211.

    Article  Google Scholar 

  41. XIE Hai-ting, XU Jia-neng, LIU Guo-chao, et al. Development and analysis of nitrogen-doped amorphous InGaZnO thin film transistors [J]. Materials Science in Semiconductor Processing, 2017, 64: 1–5. DOI: https://doi.org/10.1016/j.mssp.2017.03.003.

    Article  Google Scholar 

  42. ABDULLAH S A, SAHDAN M Z, NAFARIZAL N, et al. Influence of substrate annealing on inducing Ti3+ and oxygen vacancy in TiO2 thin films deposited via RF magnetron sputtering [J]. Applied Surface Science, 2018, 462: 575–582. DOI: https://doi.org/10.1016/j.apsusc.2018.08.137.

    Article  Google Scholar 

  43. SUN Hui, JEN S U, CHIANG H P, et al. Investigation of optoelectronic performance in In, Ga co-doped ZnO thin films with various in and Ga levels [J]. Thin Solid Films, 2017, 641: 12–18. DOI: https://doi.org/10.1016/j.tsf.2017.02.040.

    Article  Google Scholar 

  44. CHEN X F, HE G, LIU M, et al. Modulation of optical and electrical properties of sputtering-derived amorphous InGaZnO thin films by oxygen partial pressure [J]. Journal of Alloys and Compounds, 2014, 615: 636–642. DOI: https://doi.org/10.1016/j.jallcom.2014.06.194.

    Article  Google Scholar 

  45. KIM Y S, LEE Y J, HEO S B, et al. Fabrication and characterization of Ag intermediate transparent and conducting TiON/Ag/TiON multilayer films [J]. Optics Communications, 2011, 284(9): 2303–2306. DOI: https://doi.org/10.1016/j.optcom.2010.12.066.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen  (陈杰).

Additional information

Foundation item

Project(2018M632797) supported by the Postdoctoral Science Foundation of China; Project(52004253) supported by the National Natural Science Foundation of China

Contributors

CHEN Jie provided the concept and edited the draft of manuscript. ZHANG Yu conducted the literature review, analyzed the measured data and wrote the first draft of the manuscript. LIU Shuai, LIU Shu-han and WANG Zhi-jun helped to revise manuscript. SUN Ben-shuang, SHU Yong-chun and HE Ji-lin edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, J., Sun, Bs. et al. Optical and electrical properties of room temperature prepared α-IGZO thin films using an In2Ga2ZnO7 ceramic target. J. Cent. South Univ. 29, 1062–1074 (2022). https://doi.org/10.1007/s11771-022-4978-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4978-9

Key words

关键词

Navigation