Skip to main content
Log in

Effects of pre-rolling on mechanical properties and fatigue crack growth rate of 2195 Al-Li alloy

预变形对2195铝锂合金力学性能及疲劳裂纹扩展速率的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

While pre-deformation is often conducted before aging treatment to increase the strength and microhardness of 2195 Al-Li alloy, it often increases the fatigue crack growth (FCG) rate and thus reduces the fatigue life of the alloy. To determine the effects and causes of pre-deformation and heat treatment on the mechanical properties and FCG rate of 2195 Al-Li alloy, and to provide a suitable calculation model for the FCG rate under different pre-deformation conditions, 2195 Al-Li alloy specimens with different degrees of pre-rolling (0, 3%, 6%, and 9%) were investigated. The experimental results indicate that with the increase of pre-rolling, the density of the T1 phase and the uniformity of the S′ distribution and the microhardness, tensile strength, and yield strength of the alloy increase and at the same time the FCG rate increases, and thus the fatigue life is reduced. It was also found that the normalized stress intensity factor of elastic modulus (E) can be applied to correlate the FCG rate of pre-rolled 2195 Al-Li alloy with constant C and K parameters.

摘要

时效前的预变形处理可增加2195铝锂合金的强度和硬度, 但这会加快合金的疲劳裂纹扩展(FCG)速率, 从而缩短合金的疲劳寿命. 确定合适的预变形-时效工艺制度, 在提高2195铝锂合金的强度和硬度的同时尽量降低其对疲劳裂纹扩展速率的影响, 是进一步提高铝锂合金服役性能的关键. 为此, 研究了预变形程度(0、3%、6%和9%)对2195铝锂合金试样的硬度、 强度、 裂纹扩展速率以及疲劳断裂形貌与析出相等影响规律, 揭示预变形对2195铝锂合金力学性能和FCG速率影响的作用机制. 结果表明: 随着预变形量的增加, T1相密度增加、 S′相分布细化, 导致合金显微硬度、 抗拉强度和屈服强度增加, 同时FCG速率加快、 合金疲劳寿命缩短. 同时, 还提供了不同预变形程度下2195铝锂合金FCG速率的计算模型, 将弹性模量(E)作为归一化应力强度因子, 实现预变形后2195铝锂合金的FCG速率与常数CK相关联, 较好地预测了不同预变形状态下2195铝锂合金的裂纹扩展速率.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XIOMARA C, THOMAS B, RIOJA R J. New aluminum lithium alloys for aerospace applications [C]//Light Met Technol Conf. Quebec, Canada: Saint-Saveur, 2007: 41–46.

    Google Scholar 

  2. RIOJA R J, LIU J. The evolution of Al-Li base products for aerospace and space applications [J]. Metallurgical and Materials Transactions A, 2012, 43(9): 3325–3337. DOI: https://doi.org/10.1007/s11661-012-1155-z.

    Article  Google Scholar 

  3. WARNER T. Recently-developed aluminium solutions for aerospace applications [J]. Materials Science Forum, 2006, 519–521: 1271–1278. DOI: 0.4028/www.scientific.net/msf.519-521.1271.

    Article  Google Scholar 

  4. MARSH G. Composites and metals–A marriage of convenience? [J]. Reinforced Plastics, 2014, 58(2): 38–42. DOI: https://doi.org/10.1016/s0034-3617(14)70108-0.

    Article  Google Scholar 

  5. YUAN Shun, LI Yi-bo, HUANG Ming-hui, et al. Determination of key parameters of Al–Li alloy adhesively bonded joints using cohesive zone model [J]. Journal of Central South University, 2018, 25(9): 2049–2057. DOI: https://doi.org/10.1007/s11771-018-3894-5.

    Article  Google Scholar 

  6. RIOJA R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications [J]. Materials Science and Engineering A, 1998, 257(1): 100–107. DOI: https://doi.org/10.1016/S0921-5093(98)00827-2.

    Article  Google Scholar 

  7. ZHOU C, ZHAN L H, SHEN R L, et al. Creep behavior and mechanical properties of Al-Li-S4 alloy at different aging temperatures [J]. Journal of Central South University, 2020, 27(4): 1168–1175. DOI: https://doi.org/10.1007/s11771-020-4357-3.

    Article  Google Scholar 

  8. WEN Tao, CHEN Yong-lai, DU Yue, et al. Effect of spinning-deformation on microstructure and mechanical properties in 2195 Al-Li alloy [J]. Manned Spaceflight, 2020, 26(6): 717–722. DOI: https://doi.org/10.3969/j.issn.1674-5825.2020.06.007.

    Google Scholar 

  9. DUAN Lian, ZHAN Li-hua, XU Yong-qian, et al. Effect of pre deformation on creep aging behavior and microstructure evolution of Al-Li alloy [J]. Journal of Plastic Engineering, 2020, 27(8): 106–115.

    Google Scholar 

  10. WANG Lin, BHATTA L, XIONG Han-qing, et al. Mechanical properties and microstructure evolution of an Al-Cu-Li alloy subjected to rolling and aging [J]. Journal of Central South University, 2021, 28: 3800–3817. DOI: https://doi.org/10.1007/s11771-021-4764-0.

    Article  Google Scholar 

  11. STARKE E A, STALEY J T. Application of modern aluminum alloys to aircraft [J]. Progress in Aerospace Sciences, 1996, 32(2, 3): 131–172.

    Article  Google Scholar 

  12. SCHIJVE J. The effect of pre-strain on fatigue crack growth and crack closure [J]. Engineering Fracture Mechanics, 1975, 8(4): 575–581.

    Article  Google Scholar 

  13. WANG Zhi-xiu, LI Hai, WEI Xiu-yu, et al. Effects of prior strain on static tensile properties and fatigue lives of 2E12 aluminum alloy [J]. Rare Metal Materials and Engineering, 2010, 39(S1): 138–141. (in Chinese)

    Google Scholar 

  14. LIU Fei, LIU Zhi-yi, LIU Meng, et al. Analysis of empirical relation between microstructure, texture evolution and fatigue properties of an Al-Cu-Li alloy during different pre-deformation processes [J]. Materials Science and Engineering A, 2018, 726: 309–319. DOI: https://doi.org/10.1016/j.msea.2018.04.047.

    Article  Google Scholar 

  15. SHEN Ke-ren, TIMKO M, LI Yong-jun, et al. The effect of temper, grain orientation, and composition on the fatigue properties of forged aluminum-lithium 2195 alloy [J]. Journal of Materials Engineering and Performance, 2019, 28(9): 5625–5638. DOI: https://doi.org/10.1007/s11665-019-04300-y.

    Article  Google Scholar 

  16. GABLE B M, ZHU A W, CSONTOS A A, et al. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al-Li-Cu-X alloy [J]. Journal of Light Metals, 2001, 1(1): 1–14. DOI: https://doi.org/10.1016/S1471-5317(00)00002-X.

    Article  Google Scholar 

  17. CASSADA W A, SHIFLET G J, STARKE E A. The effect of plastic deformation on Al2CuLi (T1) precipitation [J]. Metallurgical Transactions A, 1991, 22(2): 299–306. DOI: https://doi.org/10.1007/BF02656799.

    Article  Google Scholar 

  18. ZHANG Jin, LI Zhi-de, XU Fu-shun, et al. Regulating effect of pre-stretching degree on the creep aging process of Al-Cu-Li alloy [J]. Materials Science and Engineering A, 2019, 763: 138157. DOI: https://doi.org/10.1016/j.msea.2019.138157.

    Article  Google Scholar 

  19. LI Jin-feng, YE Zhi-hao, LIU Dan-yang, et al. Influence of pre-deformation on aging precipitation behavior of three Al-Cu-Li alloys [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(2): 133–145. DOI: https://doi.org/10.1007/s40195-016-0519-6.

    Article  Google Scholar 

  20. PEARSON S. Fatigue crack propagation in metals [J]. Nature, 1966, 211(5053): 1077–1078.

    Article  Google Scholar 

  21. LAL D N. On the combined influences of Young’s modulus and stress ratio on the LEFM fatigue crack growth process: A new mechanistic approach [J]. Engineering Fracture Mechanics, 1996, 54(6): 761–790. DOI: https://doi.org/10.1016/0013-7944(95)00240-5.

    Article  Google Scholar 

  22. MATCHA N B, SASIKALA G. Effect of temperature on the fatigue crack growth behaviour of SS316L(N) [J]. International Journal of Fatigue, 2020, 40: 105815.

    Google Scholar 

  23. MURAYAMA M, HONO K, SAGAAND M, et al. Atom probe studies on the early stages of precipitation in Al-Mg-Si alloys [J]. Materials Science and Engineering A, 1998, 250(1): 127.

    Article  Google Scholar 

  24. RITCHIE R O. Near-threshold fatigue-crack propagation in steels [J]. International Metals Reviews, 1979, 24(1): 205–230. DOI: https://doi.org/10.1179/imtr.1979.24.1.205.

    Article  Google Scholar 

  25. RODGERS B I, PRANGNELL P B. Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al-Cu-Li alloy AA2195 [J]. Acta Materialia, 2016, 108: 55–67. DOI: https://doi.org/10.1016/j.actamat.2016.02.017.

    Article  Google Scholar 

  26. AN Li-hui, CAI Yang, LIU Wei, et al. Effect of pre-deformation on microstructure and mechanical properties of 2219 aluminum alloy sheet by thermomechanical treatment [J]. Transactions of Nonferrous Metals Society of China, 2012, 22: s370–s375. DOI: https://doi.org/10.1016/S1003-6326(12)61733-6.

    Article  Google Scholar 

  27. DORIN T, de GEUSER F, LEFEBVRE W, et al. Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al-Cu-Li alloy [J]. Materials Science and Engineering A, 2014, 605: 119–126. DOI: https://doi.org/10.1016/j.msea.2014.03.024.

    Article  Google Scholar 

  28. ZHAO Qi, LIU Zhi-yi, LI Sha-sha, et al. Evolution of the Brass texture in an Al-Cu-Mg alloy during hot rolling [J]. Journal of Alloys and Compounds, 2017, 691: 786–799. DOI: https://doi.org/10.1016/j.jallcom.2016.08.322.

    Article  Google Scholar 

  29. ZHAO Qi, LIU Zhi-yi, HUANG Tian-tian, et al. Enhanced fracture toughness in an annealed Al-Cu-Mg alloy by increasing Goss/Brass texture ratio [J]. Materials Characterization, 2016, 119: 47–54. DOI: https://doi.org/10.1016/j.matchar.2016.07.015.

    Article  Google Scholar 

  30. WANG Z C, PRANGNELL P B. Microstructure refinement and mechanical properties of severely deformed Al-Mg-Li alloys [J]. Materials Science and Engineering A, 2002, 328(1, 2): 87–97. DOI: https://doi.org/10.1016/S0921-5093(01)01681-1.

    Article  Google Scholar 

  31. LI Fu-dong, LIU Zhi-yi, WU Wen-ting, et al. Enhanced fatigue crack propagation resistance of Al-Cu-Mg alloy by intensifying Goss texture and refining Goss grains [J]. Materials Science and Engineering A, 2017, 679: 204–214. DOI: https://doi.org/10.1016/j.msea.2016.10.003.

    Article  Google Scholar 

  32. LI Fu-dong, LIU Zhi-yi, WU Wen-ting, et al. Slip band formation in plastic deformation zone at crack tip in fatigue stage II of 2xxx aluminum alloys [J]. International Journal of Fatigue, 2016, 91: 68–78. DOI: https://doi.org/10.1016/j.ijfatigue.2016.05.014.

    Article  Google Scholar 

  33. LI Fu-dong, LIU Zhi-yi, WU Wen-ting, et al. On the role of texture in governing fatigue crack propagation behavior of 2524 aluminum alloy [J]. Materials Science and Engineering A, 2016, 669: 367–378. DOI: https://doi.org/10.1016/j.msea.2016.05.091.

    Article  Google Scholar 

  34. WU Wen-ting, LIU Zhi-yi, HU Yang-cheng, et al. Goss texture intensity effect on fatigue crack propagation resistance in an Al-Cu-Mg alloy [J]. Journal of Alloys and Compounds, 2018, 730: 318–326. DOI: https://doi.org/10.1016/j.jallcom.2017.09.320.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were formulated by LI Yi-bo, CHEN Meng-xi, and HUANG Ming-hui. CHEN Meng-xi, XIA Lin-yan, and WU Zhen-yu provided the measured mechanical performance data and analyzed the measured data. LI Yi-bo, CHEN Meng-xi, and XIA Lin-yan provided the results of fatigue crack growth experiments and performed calculations and analyses on the results. YANG Yi and QU Zi-jing assisted in the preparation of all test samples. The first draft was written by LI Yi-bo, CHEN Meng-xi, and XIA Lin-yan. All authors responded to the reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Yi-bo Li  (李毅波).

Ethics declarations

CHEN Meng-xi, LI Yi-bo, XIA Lin-yan, HUANG Ming-hui, WU Zhen-yu, YANG Yi, QU Zi-jing declare that they have no conflict of interest.

Additional information

Foundation item: Project(U21A20132) supported by the National Natural Science Foundation of China; Project(GuiRenzi2019(13)) supported by the Guangxi Specially-invited Experts Foundation of Guangxi Zhuang Autonomous Region, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Mx., Li, Yb., Xia, Ly. et al. Effects of pre-rolling on mechanical properties and fatigue crack growth rate of 2195 Al-Li alloy. J. Cent. South Univ. 29, 836–847 (2022). https://doi.org/10.1007/s11771-022-4969-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4969-x

Key words

关键词

Navigation