Skip to main content
Log in

Accuracy assessment of ICESat-2 ATL08 terrain estimates: A case study in Spain

ICESat-2 ATL08 地形产品精度验证: 以西班牙为例

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The Ice, Cloud and Land Elevation Satellite-2 (ICESat-2), a new spaceborne light detection and ranging (LiDAR) system, was successfully launched on September 15, 2018. The ICESat-2 data increase the types of spaceborne LiDAR data archive and provide new control point data for large-scale topographic mapping and geodetic surveying. However, the accuracy of the ATL08 terrain estimates has not been fully evaluated on a large scale and in complex terrain conditions. This article aims to quantitatively assess the accuracy of ICESat-2 ATL08 terrain estimates. Firstly, the ICESat-2 ATL08 terrain estimates were compared with the high-precision airborne LiDAR digital terrain model (DTM), and impacts of acquisition time, vegetation cover type, terrain slope, and season change on the terrain estimation accuracy were analyzed. We get the following conclusions from the analysis: 1) the mean and RMSE of the terrain estimates of day acquisitions are 0.22 m and 0.59 m higher than that of night acquisitions; 2) the accuracy of the ATL08 terrain estimates acquired in vegetated areas is lower than those in non-vegetated areas; 3) the accuracy of the ATL08 terrain estimates is inversely proportional to the slope, and the elevation error increases significantly when the terrain slope is larger than 30°; 4) in the non-vegetation covered area, the accuracy of the ATL08 terrain estimates of summer and winter acquisitions has no obvious discrepancy, but in vegetated area, the accuracy of winter acquisitions is significantly better than that of summer acquisitions. This research provides references for the selection and application of ICESat-2 data.

摘要

新一代星载激光雷达(Ice, Cloud and Land Elevation Satellite-2; ICESat-2)于2018年9月15日成 功发射。ICESat-2 丰富了星载激光雷达数据种类, 为大范围地形制图和大地测量提供了新的控制点数 据。然而, ATL08 地形估计值的准确性尚未在大规模和复杂地形条件下进行全面评估。本文旨在大范 围定量评估ICESat-2 ATL08 地形估计值的精度情况。将ICESat-2 ATL08 地形估计值与高精度机载 LiDAR数字地形模型(DTM) 进行比较, 并分析了采集时间、植被覆盖类型、地形坡度和季节变化对地 形估计精度的影响。通过分析得出以下结论: 1)白天获取的地形产品数据的平均误差和均方根误 差比夜间分别高0.22 m、0.59 m; 2)有植被覆盖地区的ATL08 地形估计值精度要低于非植被覆盖地区; 3)ATL08 地形估计值精度与坡度呈现反比关系, 当坡度大于30°时, 高程误差显著增大; 4)夏季和冬季 获取的ATL08 产品数据的精度在非植被区无明显差异, 而在植被区冬季数据精度明显优于夏季数据。 本文将为用户选取和应用ICESat-2产品数据提供有益指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NEUENSCHWANDER A, PITTS K. The ATL08 land and vegetation product for the ICESat-2 Mission [J]. Remote Sensing of Environment, 2019, 221: 247–259. DOI: https://doi.org/10.1016/j.rse.2018.11.005.

    Article  Google Scholar 

  2. MARKUS T, NEUMANN T, MARTINO A, et al. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation [J]. Remote Sensing of Environment, 2017, 190: 260–273. DOI: https://doi.org/10.1016/j.rse.2016.12.029.

    Article  Google Scholar 

  3. NEUENSCHWANDER A, MAGRUDER L. The potential impact of vertical sampling uncertainty on ICESat-2/ATLAS terrain and canopy height retrievals for multiple ecosystems [J]. Remote Sensing, 2016, 8(12): 1039. DOI: https://doi.org/10.3390/rs8121039.

    Article  Google Scholar 

  4. SMITH B, FRICKER H A, HOLSCHUH N, et al. Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter [J]. Remote Sensing of Environment, 2019, 233: 111352. DOI: https://doi.org/10.1016/j.rse.2019.111352.

    Article  Google Scholar 

  5. LI TIAN, DAWSON G J, CHUTER S J, et al. Mapping the Antarctic grounding zone from ICESat-2 laser altimetry [J]. The Cryosphere, 2020, 14(11): 3629–3643. DOI: https://doi.org/10.5194/tc-2020-105.

    Article  Google Scholar 

  6. SMITH B, FRICKER H A, GARDNER A S, et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes [J]. Science, 2020, 368(6496): 1239–1242. DOI: https://doi.org/10.1126/science.aaz5845.

    Article  Google Scholar 

  7. KWOK R, MARKUS T, KURTZ N T, et al. Surface height and sea ice freeboard of the Arctic Ocean from ICESat-2: Characteristics and early results [J]. Journal of Geophysical Research: Oceans, 2019, 124(10): 6942–6959. DOI: https://doi.org/10.1029/2019JC015486.

    Article  Google Scholar 

  8. PETTY A A, KURTZ N T, KWOK R, et al. Winter Arctic Sea ice thickness from ICESat-2 freeboards [J]. Journal of Geophysical Research: Oceans, 2020, 125(5): e2019JC015764. DOI: https://doi.org/10.1029/2019JC015764.

    Google Scholar 

  9. FAIR Z, FLANNER M, BRUNT K M, et al. Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake depth retrievals [J]. The Cryosphere, 2020, 14(11): 4253–4263. DOI: https://doi.org/10.5194/tc-14-4253-2020.

    Article  Google Scholar 

  10. HORVAT C, BLANCHARD-WRIGGLESWORTH E, PETTY A. Observing waves in sea ice with ICESat-2 [J]. Geophysical Research Letters, 2020, 47(10): e2020GL087629. DOI: https://doi.org/10.1029/2020GL087629.

    Article  Google Scholar 

  11. ALBRIGHT A, GLENNIE C. Nearshore bathymetry from fusion of sentinel-2 and ICESat-2 observations [J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5): 900–904. DOI: https://doi.org/10.1109/LGRS.2020.2987778.

    Article  Google Scholar 

  12. WANG Cheng, ZHU Xiao-xiao, NIE Sheng, et al. Ground elevation accuracy verification of ICESat-2 data: A case study in Alaska, USA [J]. Optics Express, 2019, 27(26): 38168–38179. DOI: https://doi.org/10.1364/OE.27.038168.

    Article  Google Scholar 

  13. LI Wang, NIU Zheng, SHANG Rong, et al. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data [J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92: 102163. DOI: https://doi.org/10.1016/j.jag.2020.102163.

    Article  Google Scholar 

  14. ZHU Xiao-xiao, WANG Cheng, NIE Sheng, et al. Mapping forest height using photon-counting LiDAR data and Landsat 8 OLI data: A case study in Virginia and North Carolina, USA [J]. Ecological Indicators, 2020, 114: 106287. DOI: https://doi.org/10.1016/j.ecolind.2020.106287.

    Article  Google Scholar 

  15. NEUENSCHWANDER A L, MAGRUDER L A. Canopy and terrain height retrievals with ICESat-2: A first look [J]. Remote Sensing, 2019, 11(14): 1721. DOI: https://doi.org/10.3390/rs11141721.

    Article  Google Scholar 

  16. ZHANG Yan-li, PANG Yan, CUI Du-du, et al. Accuracy assessment of the ICESat-2/ATL06 product in the Qilian mountains based on CORS and UAV data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 1558–1571. DOI: https://doi.org/10.1109/JSTARS.2020.3044463.

    Article  Google Scholar 

  17. DANDABATHULA G, VERMA M, SATYANARAYANA P, et al. Evaluation of ICESat-2 ATL08 data product: Performance assessment in inland water [J]. European Journal of Environment and Earth Sciences, 2020, 1(3): DOI: https://doi.org/10.24018/ejgeo.2020.1.3.15.

    Article  Google Scholar 

  18. NEUENSCHWANDER A, GUENTHER E, WHITE J C, et al. Validation of ICESat-2 terrain and canopy heights in boreal forests [J]. Remote Sensing of Environment, 2020, 251: 112110. DOI: https://doi.org/10.1016/j.rse.2020.112110.

    Article  Google Scholar 

  19. WANG Mi, WEI Yu, YANG Bo, et al. Extraction and analysis of global elevation control points from ICESat-2/ATLAS data [J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184–192. DOI: https://doi.org/10.13203/j.whugis20200531. (in Chinese)

    Google Scholar 

  20. WANG Cheng, ZHU Xiao-xiao, NIE Sheng, et al. Ground elevation accuracy verification of ICESat-2 data: A case study in Alaska, USA [J]. Optics Express, 2019, 27(26): 38168–38179. DOI: https://doi.org/10.1364/OE.27.038168.

    Article  Google Scholar 

  21. ALBERDI I, VALLEJO R, ÁLVAREZ-GONZÁLEZ J G, et al. The multi-objective Spanish national forest inventory [J]. Forest Systems, 2017, 26(2): e04S. DOI: https://doi.org/10.5424/fs/2017262-10577.

    Article  Google Scholar 

  22. VALLEJO-BOMBÍN R. The forest map of Spain scale 1: 50, 000 (MFE50) as the basis of the third national forest inventory [J]. Cuadernos de la Sociedad Española de Ciencias Forestales, 2005, 19: 205–210. (in Spanish)

    Google Scholar 

  23. ZHU Xiao-xiao, WANG Cheng, XI Xiao-huan, et al. ICESat-2/ATLAS data processing and applications: A Review [J]. Infrared and Laser Engineering, 2020, 49(11): 76–85. DOI: https://doi.org/10.3788/IRLA20200259. (in Chinese)

    Google Scholar 

  24. AN De-long, YANG Jin, WU Yong-bin, et al. Current research progress and applications of ICESat-2 laser altimetry satellite [J]. Hydrographic Surveying and Charting, 2019, 39(6): 9–15. DOI: https://doi.org/10.3969/j.issn.1671-3044.2019.06.003. (in Chinese)

    Google Scholar 

  25. QIN Lei. Research on the method of forest canopy height retrieval based on ICESat-2 Lidar photon cloud data [D]. Hei Longjiang: Northeast Forestry University of Engineering and Technology, 2020. DOI: https://doi.org/10.27009/d.cnki.gdblu.2020.000753. (in Chinese)

    Google Scholar 

  26. GÓMEZ C, LOPEZ-SANCHEZ J M, ROMERO-PUIG N, et al. Canopy height estimation in Mediterranean forests of Spain with TanDEM-X data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2956–2970. DOI: https://doi.org/10.1109/JSTARS.2021.3060691.

    Article  Google Scholar 

  27. AROZARENA A, VILLA G, HERMOSILLA J, et al. The National Territory Observation Plan in Spain: Current situation and next steps [J]. Mapping, 2006, 111: 16–22. (in Spanish)

    Google Scholar 

  28. ESTILOW T W, YOUNG A H, ROBINSON D A. A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring [J]. Earth System Science Data, 2015, 7(1): 137–142. DOI: https://doi.org/10.5194/essd-7-137-2015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhu  (朱珺).

Additional information

Foundation item

Projects(41820104005, 41904004, 42030112) supported by the National Natural Science Foundation of China

Contributors

The overarching research goals were developed by ZHU Jun, YANG Pan-feng, and LI Yi. ZHU Jun and YANG Pan-feng downloaded the ATL08 data, and analyzed the experimental results. XIE Yan-zhou and FU Hai-qiang conducted the literature review. The initial draft of the manuscript was written by ZHU Jun, YANG Pan-feng, and LI Yi and polished by XIE Yan-zhou and FU Haiqiang. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

ZHU Jun, YANG Pan-feng, LI Yi, XIE Yanzhou, and FU Hai-qiang declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Yang, Pf., Li, Y. et al. Accuracy assessment of ICESat-2 ATL08 terrain estimates: A case study in Spain. J. Cent. South Univ. 29, 226–238 (2022). https://doi.org/10.1007/s11771-022-4896-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4896-x

Key words

关键词

Navigation