Skip to main content
Log in

Experimental and numerical simulation of loading rate effects on failure and strain energy characteristics of coal-rock composite samples

加载速率对煤岩组合体试样破坏及应变能特征影响的实验与数值模拟

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The deformation and failure of coal and rock is energy-driving results according to thermodynamics. It is important to study the strain energy characteristics of coal-rock composite samples to better understand the deformation and failure mechanism of of coal-rock composite structures. In this research, laboratory tests and numerical simulation of uniaxial compressions of coal-rock composite samples were carried out with five different loading rates. The test results show that strength, deformation, acoustic emission (AE) and energy evolution of coal-rock composite sample all have obvious loading rate effects. The uniaxial compressive strength and elastic modulus increase with the increase of loading rate. And with the increase of loading rate, the AE energy at the peak strength of coal-rock composites increases first, then decreases, and then increases. With the increase of loading rate, the AE cumulative count first decreases and then increases. And the total absorption energy and dissipation energy of coal-rock composite samples show non-linear increasing trends, while release elastic strain energy increases first and then decreases. The laboratory experiments conducted on coal-rock composite samples were simulated numerically using the particle flow code (PFC). With careful selection of suitable material constitutive models for coal and rock, and accurate estimation and calibration of mechanical parameters of coal-rock composite sample, it was possible to obtain a good agreement between the laboratory experimental and numerical results. This research can provide references for understanding failure of underground coal-rock composite structure by using energy related measuring methods.

摘要

岩石的变形破坏过程是能量积聚与耗散的过程, 岩石变形破坏是能量驱动的结果. 基于室内岩石力学试验及数值模拟软件, 进行了5种不同加载速率下的煤-岩组合试件的单轴压缩试验, 得到了不同加载速率时煤-岩组合体的强度、变形及能量特征. 试验结果表明: 煤岩组合体试样的强度、变形、声发射和能量等特征均具有明显的加载速率效应, 单轴抗压强度和弹性模量随着加载速率的增加呈增加趋势; 峰值强度处的声发射能量呈先增大后减小再增大的趋势, 而煤岩复合试样的声发射累积计数则呈先减小后增大趋势; 总的吸收能量U和耗散能Ud随着加载速率的增加呈非线性增长趋势, 而弹性应变能Ue则呈先增大后减小的趋势. 通过选择合适的煤岩本构模型以及对煤岩组合体试样的力学参数进行准确的估算和标定, 采用颗粒流程序(PFC)模拟了不同加载速率的煤岩组合体试样的单轴压缩试验, 数值计算结果与室内实验结果取得了较好的一致性. 该研究得到了不同加载速率下煤岩组合体的能量特征, 为煤岩组合体试样的破坏提供参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SINGH R, MANDAL P K, SINGH A K, KUMAR R, SINHA A. Coal pillar extraction at deep cover: With special reference to Indian coalfields [J]. International Journal of Coal Geology, 2011, 86(2, 3): 276–288. DOI:https://doi.org/10.1016/j.coal.2011.03.003.

    Article  Google Scholar 

  2. POULSEN B A. Coal pillar load calculation by pressure arch theory and near field extraction ratio [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7): 1158–1165. DOI:https://doi.org/10.1016/j.ijrmms.2010.06.011.

    Article  Google Scholar 

  3. ABDIA M, MOLLADAVOODI H, SALARIRAD H. Rock failure analysis based on a coupled elastoplastic-logarithmic damage model [J]. Archives of Mining Sciences, 2017, 62(4): 753–774. DOI:https://doi.org/10.1515/amsc-2017-0053.

    Article  Google Scholar 

  4. GUO Yu-xia, ZHAO Yong-hui, WANG Sheng-wei, FENG Guo-rui, ZHANG Yu-jiang, RAN Hong-yu. Stress — strain — acoustic responses in failure process of coal rock with different height to diameter ratios under uniaxial compression [J]. Journal of Central South University, 2021, 28(6): 1724–1736. DOI:https://doi.org/10.1007/s11771-021-4729-3.

    Article  Google Scholar 

  5. HE Peng-fei, KULATILAKE P H S W, YANG Xu-xu, LIU Dong-qiao, HE Man-chao. Detailed comparison of nine intact rock failure criteria using polyaxial intact coal strength data obtained through PFC3D simulations [J]. Acta Geotechnica, 2018, 13(2): 419–445. DOI:https://doi.org/10.1007/s11440-017-0566-9.

    Google Scholar 

  6. TAN Yun-liang, WANG Zi-hui, LIU Xue-sheng, WANG Gun-weng. Estimation of dynamic energy induced by coal mining and evaluation of burst risk [J]. Journal of China Coal Society, 2021, 46(1): 123–131. DOI:https://doi.org/10.13225/j.cnki.jccs.2021.0010. (in Chinese)

    Google Scholar 

  7. NING Jian-guo, WANG Jun, TAN Yun-liang, XU Qiang. Mechanical mechanism of overlying strata breaking and development of fractured zone during close-distance coal seam group mining [J]. International Journal of Mining Science and Technology, 2020, 30(2): 207–215. DOI:https://doi.org/10.1016/j.ijmst.2019.03.001.

    Article  Google Scholar 

  8. LIU Xue-sheng, SONG Shi-lin, TAN Yun-liang, FAN Deyuan, NING Jian-guo, LI Xue-bin, YIN Yan-chun. Similar simulation study on the deformation and failure of surrounding rock of a large section chamber group under dynamic loading [J]. International Journal of Mining Science and Technology, 2021, 31(3): 495–505. DOI:https://doi.org/10.1016/j.ijmst.2021.03.009.

    Article  Google Scholar 

  9. ÁLVAREZ-FERNÁNDEZ M I, GONZÁLEZ-NICIEZA C, ÁLVAREZ-VIGIL A E, HERRERA GARCÍA G, TORNO S. Numerical modelling and analysis of the influence of local variation in the thickness of a coal seam on surrounding stresses: Application to a practical case [J]. International Journal of Coal Geology, 2009, 79(4): 157–166. DOI:https://doi.org/10.1016/j.coal.2009.06.008.

    Article  Google Scholar 

  10. LIU Xue-sheng, FAN De-yuan, TAN Yun-liang, SONG Shi-lin, LI Xian-feng, NING Jian-guo, GU Qing-heng, MA Qing. Failure evolution and instability mechanism of surrounding rock for close-distance parallel Chambers with super-large section in deep coal mines [J]. International Journal of Geomechanics, 2021, 21(5): 04021049. DOI:https://doi.org/10.1061/(asce)gm.1943-5622.0001998.

    Article  Google Scholar 

  11. MA Qing, TAN Yun-liang, LIU Xue-sheng, GU Qing-heng, LI Xue-bin. Effect of coal thicknesses on energy evolution characteristics of roof rock-coal-floor rock sandwich composite structure and its damage constitutive model [J]. Composites Part B: Engineering, 2020, 198: 108086. DOI:https://doi.org/10.1016/j.compositesb.2020.108086.

    Article  Google Scholar 

  12. PALEI S K, DAS S K. Logistic regression model for prediction of roof fall risks in bord and pillar workings in coal mines: An approach [J]. Safety Science, 2009, 47(1): 88–96. DOI:https://doi.org/10.1016/j.ssci.2008.01.002.

    Article  Google Scholar 

  13. ZHAO Zeng-hui, WANG Wei-ming, WANG Li-hua, DAI Chun-quan. Compression-shear strength criterion of coal-rock combination model considering interface effect [J]. Tunnelling and Underground Space Technology, 2015, 47: 193–199. DOI:https://doi.org/10.1016/j.tust.2015.01.007.

    Article  Google Scholar 

  14. GONG Feng-qiang, YE Hao, LUO Yong. The effect of high loading rate on the behaviour and mechanical properties of coal-rock combined body [J]. Shock and Vibration, 2018, 2018: 1–9. DOI:https://doi.org/10.1155/2018/4374530.

    Article  Google Scholar 

  15. MISHRA B, VERMA P. Uniaxial and triaxial single and multistage creep tests on coal-measure shale rocks [J]. International Journal of Coal Geology, 2015, 137: 55–65. DOI:https://doi.org/10.1016/j.coal.2014.11.005.

    Article  Google Scholar 

  16. ZHAO Tong-bin, XING Ming-lu, GUO Wei-yao, WANG Cun-wen, WANG Bo. Anchoring effect and energy-absorbing support mechanism of large deformation bolt [J]. Journal of Central South University, 2021, 28(2): 572–581. DOI:https://doi.org/10.1007/s11771-021-4622-0.

    Article  Google Scholar 

  17. BAŽANT Z P, BAI S P, RAVINDRA G. Fracture of rock: Effect of loading rate [J]. Engineering Fracture Mechanics, 1993, 45(3): 393–398. DOI:https://doi.org/10.1016/0013-7944(93)90024-M.

    Article  Google Scholar 

  18. TRAN Q A, SOLOWSKI W. Generalized Interpolation Material Point Method modelling of large deformation problems including strain-rate effects — Application to penetration and progressive failure problems [J]. Computers and Geotechnics, 2019, 106: 249–265. DOI:https://doi.org/10.1016/j.compgeo.2018.10.020.

    Article  Google Scholar 

  19. ZHAO Zeng-hui, SUN Wei, CHEN Shao-jie, YIN Da-wei, LIU Hao, CHEN Bao-sen. Determination of critical criterion of tensile-shear failure in Brazilian disc based on theoretical analysis and meso-macro numerical simulation [J]. Computers and Geotechnics, 2021, 134: 104096. DOI:https://doi.org/10.1016/j.compgeo.2021.104096.

    Article  Google Scholar 

  20. HASHIBA K, FUKUI K. Index of loading-rate dependency of rock strength [J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 859–865. DOI:https://doi.org/10.1007/s00603-014-0597-6.

    Article  Google Scholar 

  21. CHEN S J, YIN D W, JIANG N, WANG F, GUO W J. Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer [J]. Geomechanics and Engineering, 2019, 17(4): 333–342. DOI:https://doi.org/10.12989/gae.2019.17.4.333.

    Google Scholar 

  22. GUO Wei-yao, TAN Yun-liang, YU Feng-hai, ZHAO Tong-bin, HU Shan-chao, HUANG Dong-mei, QIN Zhe. Mechanical behavior of rock-coal-rock specimens with different coal thicknesses [J]. Geomechanics and Engineering, 2018, 15(4): 1017–1027. DOI:https://doi.org/10.12989/gae.2018.15.4.1017.

    Google Scholar 

  23. MA Qing, TAN Yun-liang, LIU Xue-sheng, ZHAO Zeng-hui, FAN De-yuan. Mechanical and energy characteristics of coal-rock composite sample with different height ratios: A numerical study based on particle flow code [J]. Environmental Earth Sciences, 2021, 80(8): 1–14. DOI:https://doi.org/10.1007/s12665-021-09453-5.

    Article  Google Scholar 

  24. LIU Shao-hong, MAO De-bing, QI Qing-xin, LI Feng-ming. Under static loading stress wave propagation mechanism and energy dissipation in compound coal rock [J]. Journal of China Coal Society, 2014, 39(S1): 15–22. DOI:https://doi.org/10.13225/j.cnki.jccs.2013.0411.

    Google Scholar 

  25. LI Cheng-jie, XU Ying, ZHANG Yu-ting, LI Hai-long. Study on energy evolution and fractal characteristics of cracked coal-rock-like combined body under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2231–2241. DOI:https://doi.org/10.13722/j.cnki.jrme.2019.0446. (in Chinese)

    Google Scholar 

  26. ZHANG Xiao-ping, WONG L N Y. Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression [J]. International Journal of Fracture, 2013, 180(1): 93–110. DOI:https://doi.org/10.1007/s10704-012-9803-2.

    Article  Google Scholar 

  27. ZHANG Xiao-ping, ZHANG Qi, WU Shun-chuan. Acoustic emission characteristics of the rock-like material containing a single flaw under different compressive loading rates [J]. Computers and Geotechnics, 2017, 83: 83–97. DOI:https://doi.org/10.1016/j.compgeo.2016.11.003.

    Article  Google Scholar 

  28. DANAS K, PONTE CASTAÑEDA P. Influence of the Lode parameter and the stress triaxiality on the failure of elastoplastic porous materials [J]. International Journal of Solids and Structures, 2012, 49(11, 12): 1325–1342. DOI:https://doi.org/10.1016/j.ijsolstr.2012.02.006.

    Article  Google Scholar 

  29. CHEN Tian, YAO Qiang-ling, WEI Fei, CHONG Zhao-hui, ZHOU Jian, WANG Chang-bin, LI Jing. Effects of water intrusion and loading rate on mechanical properties of and crack propagation in coal-rock combinations [J]. Journal of Central South University, 2017, 24(2): 423–431. DOI:https://doi.org/10.1007/s11771-017-3444-6.

    Article  Google Scholar 

  30. YIN Da-wei, CHEN Shao-jie, XING Wen-bin, HUANG Dong-mei, LIU Xing-quan. Experimental study on mechanical behavior of roof-coal pillar structure body under different loading rates [J]. Journal of China Coal Society, 2018, 43(5): 1249–1257. DOI:https://doi.org/10.13225/j.cnki.jccs.2017.1091. (in Chinese)

    Google Scholar 

  31. JIANG De-yi, CHEN Jie, REN Song, WANG Wei-zhong, BAI Yue-ming. Experimental study of strain rate effect and acoustic emission characteristics of salt rock under uniaxial compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 326–336. (in Chinese)

    Google Scholar 

  32. MAHMUTOĞLU Y. The effects of strain rate and saturation on a micro-cracked marble [J]. Engineering Geology, 2006, 82(3): 137–144. DOI:https://doi.org/10.1016/j.enggeo.2005.09.001.

    Article  Google Scholar 

  33. HONG Liang, LI Xi-bing, MA Chun-de, YIN Tu-bing, YE Zhou-yuan, LIAO Guo-yan. Study on size effect of rock dynamic strength and strain rate sensitivity [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 526–533. DOI:https://doi.org/10.3321/j.issn:1000-6915.2008.03.012.

    Google Scholar 

  34. XU Xiao-li, CHEN Lin, GAO Feng, ZHANG Zhi-zhen. Studies on loading rate effects and energy mechanism of granite [J]. Chinese Journal of Solid Mechanics, 2015, 36(2): 154–163. DOI:https://doi.org/10.19636/j.cnki.cjsm42-1250/o3.2015.02.008. (in Chinese)

    Google Scholar 

  35. JIANG Yao-dong, LI Hai-tao, ZHAO Yi-xin, ZHOU Kun. Effect of loading rate on energy accumulation and dissipation in rocks [J]. Journal of China University of Mining & amp; Technology, 2014, 43(3): 369–373. DOI:https://doi.org/10.13247/j.cnki.jcumt.000121. (in Chinese)

    Google Scholar 

  36. XIE He-ping, PENG Rui-dong, JU Yang, ZHOU Hong-wei. On energy analysis of rock failure [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2603–2608.

    Google Scholar 

  37. SOLECKI R, CONANT R J. Advanced mechanics of materials [M]. UK: University Press London and Oxford, 2003: 784.

    Google Scholar 

  38. ZHANG Zhi-zhen. Energy evolution mechanism during rock deformation and failure [D]. University of Mining and Technology, 2013. (in Chinese)

  39. SHABANIMASHCOOL M, LI C C. A numerical study of stress changes in barrier Pillars and a border area in a longwall coal mine [J]. International Journal of Coal Geology, 2013, 106: 39–47. DOI:https://doi.org/10.1016/j.coal.2012.12.008.

    Article  Google Scholar 

  40. QIU Li-ming, LIU Zhen-tang, WANG En-yuan, HE Xue-qiu, FENG Jun-jun, LI Bao-lin. Early-warning of rock burst in coal mine by low-frequency electromagnetic radiation [J]. Engineering Geology, 2020, 279: 105755. DOI:https://doi.org/10.1016/j.enggeo.2020.105755.

    Article  Google Scholar 

  41. HUANG W P, LI C, ZHANG L W, YUAN Q, ZHENG Y S, LIU Y. In situ identification of water-permeable fractured zone in overlying composite strata [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 105: 85–97. DOI:https://doi.org/10.1016/j.ijrmms.2018.03.013.

    Article  Google Scholar 

  42. CHEN Yu-long, ZUO Jian-ping, LIU De-jun, LI Ying-jie, WANG Zhen-bo. Experimental and numerical study of coal-rock bimaterial composite bodies under triaxial compression [J]. International Journal of Coal Science & amp; Technology, 2021: 1–17. DOI:https://doi.org/10.1007/s40789-021-00409-5.

  43. GONG Feng-qiang, WANG Yun-liang, LUO Song. Rockburst proneness criteria for rock materials: Review and new insights [J]. Journal of Central South University, 2020, 27(10): 2793–2821. DOI:https://doi.org/10.1007/s11771-020-4511-y.

    Article  Google Scholar 

  44. SONG Hong-qiang, ZUO Jian-ping, LIU Hai-yan, ZUO Shu-hao. The strength characteristics and progressive failure mechanism of soft rock-coal combination samples with consideration given to interface effects [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104593. DOI:https://doi.org/10.1016/j.ijrmms.2020.104593.

    Article  Google Scholar 

  45. CHEN Shao-jie, YIN Da-wei, JIANG Ning, WANG Feng, ZHAO Zeng-hui. Mechanical properties of oil shale-coal composite samples [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104120. DOI:https://doi.org/10.1016/j.ijrmms.2019.104120.

    Article  Google Scholar 

  46. JIANG Bang-you. Evolution and control mechanism of rockburst induced by TBM Excavation in deep mixed ground tunnel [D]. China University of Mining and Technology, 2017. (in Chinese)

  47. CUNDALL P A, STRACK O D L. Discussion: A discrete numerical model for granular assemblies [J]. Géotechnique, 1980, 30(3): 331–336. DOI:https://doi.org/10.1680/geot.1980.30.3.331.

    Article  Google Scholar 

  48. PFC2D (particle flow code in 2 dimensions) fish in PFC2D [M]. Minneapolis, USA: Itasca Consulting Group, 2008.

  49. ZHAO Tong-bin, GUO Wei-yao, LU Cai-ping, ZHAO Guang-ming. Failure characteristics of combined coal-rock with different interfacial angles [J]. Geomechanics and Engineering, 2016, 11(3): 345–359. DOI:https://doi.org/10.12989/gae.2016.11.3.345.

    Article  Google Scholar 

  50. LI Zi-yun, WU Guang, HUANG Tian-zhu, LIU Yang. Variation of energy and criteria for strength failure of shale under traixial cyclic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 662–670. DOI:https://doi.org/10.13722/j.cnki.jrme.2017.0927. (in Chinese)

    Google Scholar 

  51. WANG Gui-lin, ZHANG Liang, XU Ming, LIANG Zai-yong, RAN Long-bao. Energy damage evolution mechanism of non-across jointed rock mass under uniaxial compression [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 639–646. DOI:https://doi.org/10.11779/CJGE201904006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-liang Tan  (谭云亮) or Xue-sheng Liu  (刘学生).

Additional information

Foundation item

Projects(51774196, 51804181, 51874190) supported by the National Natural Science Foundation of China; Project (2019GSF111020) supported by the Key R& amp; D Program of Shandong Province, China; Project(201908370205) supported by the China Scholarship Council

Contributors

The overarching research goals were developed by MA Qing, TAN Yun-liang and LIU Xue-sheng. ZHAO Zeng-hui established the calculation model. FAN De-yuan and MA Qing analyzed the calculated results. PUREV Lkhamsuren conducted the literature review. The initial draft of the manuscript was written by MA Qing and TAN Yun-liang. All authors replied to reviewers comments and revised the final version.

Conflict of interest

MA Qing, TAN Yun-liang, LIU Xue-sheng, ZHAO Zeng-hui, FAN De-yuan, PUREV Lkhamsuren declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Tan, Yl., Liu, Xs. et al. Experimental and numerical simulation of loading rate effects on failure and strain energy characteristics of coal-rock composite samples. J. Cent. South Univ. 28, 3207–3222 (2021). https://doi.org/10.1007/s11771-021-4831-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4831-6

Key words

关键词

Navigation