Skip to main content
Log in

Fracture evolution and localization effect of damage in rock based on wave velocity imaging technology

基于波速成像技术的岩石破裂演化及损伤局部化效应研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

By utilizing wave velocity imaging technology, the uniaxial multi-stage loading test was conducted on siltstone to attain wave velocity imagings during rock fracture. Based on the time series parameters of acoustic emissions (AE), joint response characteristics of the velocity field and AE during rock fracture were analyzed. Moreover, the localization effect of damage during rock fracture was explored by applying wave velocity imagings. The experimental result showed that the wave velocity imagings enable three-dimensional (3-D) visualization of the extent and spatial position of damage to the rock. A damaged zone has a low wave velocity and a zone where the low wave velocity is concentrated tends to correspond to a severely damaged zone. AE parameters and wave velocity imagings depict the changes in activity of cracks during rock fracture from temporal and spatial perspectives, respectively: the activity of cracks is strengthened, and the rate of AE events increases during rock fracture; correspondingly, the low-velocity zones are gradually aggregated and their area gradually increases. From the wave velocity imagings, the damaged zones in rock were divided into an initially damaged zone, a progressively damaged zone, and a fractured zone. During rock fracture, the progressively damaged zone and the fractured zone both develop around the initially damaged zone, showing a typical localization effect of the damage. By capturing the spatial development trends of the progressively damaged zone and fractured zone in wave velocity imagings, the development of microfractures can be predicted, exerting practical significance for determining the position of the main fracture.

摘要

开展粉砂岩单轴分级加载实验, 利用波速成像技术获取岩石破裂过程的波速成像图, 结合声发射时序参数, 分析岩石破裂过程波速场与声发射的联合响应特征, 并基于波速成像图研究了岩石破裂过程的损伤局部化效应. 研究结果表明: 波速成像能够三维可视化显示岩石内部损伤的大小、 空间位置等信息, 出现损伤的区域波速低, 低波速聚集的区域往往对应严重损伤区域. 声发射参数与波速成像分别从时间和空间的角度刻画岩石破裂过程裂纹的活动性变化过程, 岩石破裂过程裂纹活动性增强, 声发射事件率增大, 低波速区域逐渐聚集, 且面积逐渐增大. 基于波速成像图, 将岩石内部损伤划分为初始损伤区、 渐进损伤区和破裂区, 岩石破裂过程中渐进损伤区与破裂区均围绕初始状态下损伤区发展, 具有典型的损伤局部化效应. 通过捕捉波速成像图渐进损伤区与破裂区的空间发展趋势, 可以预测微破裂的发展趋向, 对于确定主破裂的位置具有实际意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PATRICIA R, ARAB P B, CELESTINO T B. Characterization of rock cracking patterns in diametral compression tests by acoustic emission and petrographic analysis [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 83: 73–85. DOI: https://doi.org/10.1016/j.ijrmms.2015.12.017.

    Article  Google Scholar 

  2. JIA Zhe-qiang, XIE He-ping, ZHANG Ru, LI Cun-bao, WANG Man, GAO Ming-zhong, ZHANG Zhao-peng, ZHANG Ze-tian. Acoustic emission characteristics and damage evolution of coal at different depths under triaxial compression [J]. Rock Mechanics and Rock Engineering, 2020, 53: 2063–2076. DOI: https://doi.org/10.1007/s00603-019-02042-w.

    Article  Google Scholar 

  3. DU Kun, LI Xue-feng, TAO Ming, WANG Shao-feng. Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104411. DOI: https://doi.org/10.1016/j.ijrmms.2020.104411.

    Article  Google Scholar 

  4. LI De-xing, WANG En-yuan, KONG Xiang-guo, ALI M, WANG Dong-ming. Mechanical behaviors and acoustic emission fractal characteristics of coal specimens with a preexisting flaw of various inclinations under uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 116: 38–51. DOI: https://doi.org/10.1016/j.ijrmms.2019.03.022.

    Article  Google Scholar 

  5. TANG Jian-hui, CHEN Xu-dong, DAI Feng. Experimental study on the crack propagation and acoustic emission characteristics of notched rock beams under post-peak cyclic loading [J]. Engineering Fracture Mechanics, 2020, 226(1): 106890. DOI: https://doi.org/10.1016/j.engfracmech.2020.106890.

    Article  Google Scholar 

  6. CNUDDE V, BOONE M N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications [J]. Earth-Science Reviews, 2013, 123: 1–17. DOI: https://doi.org/10.1016/j.earscirev.2013.04.003.

    Article  Google Scholar 

  7. NASSERI M H B, REZANEZHAD F, YOUNG R P. Analysis of fracture damage zone in anisotropic granitic rock using 3D X-ray CT scanning techniques [J]. International Journal of Fracture, 2010, 168(1): 1–13. DOI: https://doi.org/10.1007/s10704-010-9551-0.

    Article  Google Scholar 

  8. MAHABADI O K, TATONE B S A, GRASSELLI G. Influence of microscale heterogeneity and microstructure on the tensile behavior of crystalline rocks [J]. Journal of Geophysical Research: Solid Earth, 2014, 119(7): 5324–5341. DOI: https://doi.org/10.1002/2014JB011064.

    Google Scholar 

  9. ZHAO Zhi, ZHOU Xiao-ping. 3D digital analysis of cracking behaviors of rocks through 3D reconstruction model under triaxial compression [J]. Journal of Engineering Mechanics, 2020, 146(8): 04020084. DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001822.

    Article  Google Scholar 

  10. CHEN Bin, XIANG Jian-sheng, LATHAM J P, BAKKER R R. Grain-scale failure mechanism of porous sandstone: An experimental and numerical FDEM study of the brazilian tensile strength test using CT-scan microstructure [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132: 104348. DOI: https://doi.org/10.1016/j.ijrmms.2020.104348.

    Article  Google Scholar 

  11. ZHU Guang-an, DOU Lin-ming, CAI Wu, LI Zhen-lei, ZHANG Min, KONG Yong, SHEN Wei. Case study of passive seismic velocity tomography in rock burst hazard assessment during underground coal entry excavation [J]. Rock Mechanics and Rock Engineering, 2016, 49(12): 4945–4955. DOI: https://doi.org/10.1007/s00603-016-1026-9.

    Article  Google Scholar 

  12. CAI Wu, DOU Lin-ming, CAO An-ye, GONG Si-yuan, LI Zhen-lei. Application of seismic velocity tomography in underground coal mines: A case study of Yima mining area, Henan, China [J]. Journal of Applied Geophysics, 2014, 109: 140–149. DOI: https://doi.org/10.1016/j.jappgeo.2014.07.021.

    Article  Google Scholar 

  13. YOUNG R P, HUTCHINS D A, TALEBI S, CHOW T, FALLS S, FARRELL L, JANSEN D, MCGAUGHEY J, TOWERS J, URBANCIC T. Laboratory and field investigations of rockburst phenomena using concurrent geotomographic imaging and acoustic emission/microseismic techniques [J]. Pageoph, 1989, 129: 647–659. DOI: https://doi.org/10.1007/BF00874530.

    Article  Google Scholar 

  14. MAXWELL S C, YOUNG R P A. Comparison between controlled source and passive source seismic velocity images [J]. Bulletin of the Ssmological Society of America, 1993, 83(6): 1813–1834. DOI: https://doi.org/10.1029/93JB02217.

    Google Scholar 

  15. GOODFELLOW S D, TISATO N, GHOFRANITABARI M, NASSERI M H B, YOUNG R P. Attenuation properties of fontainebleau sandstone during true-triaxial deformation using active and passive ultrasonics [J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2551–2566. DOI: https://doi.org/10.1007/s00603-015-0833-8.

    Article  Google Scholar 

  16. CAO An-ye, WANG Chang-bin, JING Guang-cheng, CAI Wu, ZHU Guang-an, LI Jing. Passive velocity tomography for mudstone under uniaxial compression using acoustic emission [J]. Geosciences Journal, 2017, 21(1): 93–109. DOI: https://doi.org/10.1007/s12303-016-0139-1.

    Article  Google Scholar 

  17. ZHU Guang-an, DOU Lin-ming, WANG Chang-bin, DING Zi-wei, XUE Fei. Experimental study of rock burst in coal samples under overstress and true-triaxial unloading through passive velocity tomography [J]. Safety Science, 2019, 117: 388–403. DOI: https://doi.org/10.1016/j.ssci.2019.04.012.

    Article  Google Scholar 

  18. MAXWELL S C, YOUNG R P. Seismic imaging of rock mass responses to excavation [J]. International Journal of Rock Mechanics and Mining Sciences, 1996, 33(7): 713–724. DOI: https://doi.org/10.1016/0148-9062(95)00084-4.

    Article  Google Scholar 

  19. MEGLIS I L, CHOW T, MARTIN C D, YOUNG R P. Assessing in situ microcrack damage using ultrasonic velocity tomography [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 42(1): 25–34. DOI: https://doi.org/10.1016/j.ijrmms.2004.06.002.

    Article  Google Scholar 

  20. LUXBACHER K, WESTMAN E, SWANSON P, KARFAKIS M. Three-dimensional time-lapse velocity tomography of an underground longwall panel [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(4): 478–485. DOI: https://doi.org/10.1016/j.ijrmms.2007.07.015.

    Article  Google Scholar 

  21. LU Cai-ping, LIU Guang-jian, ZHANG Nong, ZHAO Tong-bin, LIU Yang. Inversion of stress field evolution consisting of static and dynamic stresses by microseismic velocity tomography [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 87: 8–22. DOI: https://doi.org/10.1016/j.ijrmms.2016.05.008.

    Article  Google Scholar 

  22. HOSSEINI N, ORAEE K, SHAHRIAR K, GOSHTASBI K. Passive seismic velocity tomography on longwall mining panel based on simultaneous iterative reconstructive technique (SIRT) [J]. Journal of Central South University, 2012, 19(8): 2297–2306. DOI: https://doi.org/10.1007/s11771-012-1275-z.

    Article  Google Scholar 

  23. CZARNY R, PILECKI Z, NAKATA N, PILECKA E, KRAWIEC K, HARBA P, BARNAŚ M. 3D S-wave velocity imaging of a subsurface disturbed by mining using ambient seismic noise [J]. Engineering Geology, 2019, 251: 115–127. DOI: https://doi.org/10.1016/j.enggeo.2019.01.017.

    Article  Google Scholar 

  24. CAO An-ye, DOU Lin-ming, CAI Wu, GONG Si-yuan, LIU Sai, ZHAO Yong-liang. Tomographic imaging of high seismic activities in underground island longwall face[J]. Arabian Journal of Geosciences, 2016, 9(3): 1–10. DOI: https://doi.org/10.1007/s12517-015-2087-x.

    Article  Google Scholar 

  25. YASUHIRO S. Multistage creep tests with two types of sedimentary rock and estimation of long-term creep behavior [J]. Nosotchu, 2007, 36(1): 10–15. DOI: https://doi.org/10.3995/jstroke.36.10.

    Google Scholar 

  26. ZHANG Shu-guang, LIU Wen-bo, LV Hong-miao. Creep energy damage model of rock graded loading [J]. Results in Physics, 2018, 12: 1119–1125. DOI: https://doi.org/10.1016/j.rinp.2018.12.081.

    Article  Google Scholar 

  27. HU Xiao-chuan, SU Guo-shao, CHEN Guan-yan, MEI Shi-ming, FENG Xia-ting, MEI Guo-xiong, HUANG Xiao-hua. Experiment on rockburst process of borehole and its acoustic emission characteristics [J]. Rock Mechanics and Rock Engineering, 2019, 52(3): 783–802. DOI: https://doi.org/10.1007/s00603-018-1613-z.

    Article  Google Scholar 

  28. WU Chen, GONG Feng-qiang, LUO Yong. A new quantitative method to identify the crack damage stress of rock using AE detection parameters [J]. Bulletin of Engineering Geology and the Environment, 2020, 5: 1–13. DOI: https://doi.org/10.1007/s10064-020-01932-6.

    Google Scholar 

  29. GONG Feng-qiang, WU Chen. Identifying crack compaction and crack damage stress thresholds of rock using load-unload response ratio (LURR) theory [J]. Rock Mechanics and Rock Engineering, 2020, 53: 943–954. DOI: https://doi.org/10.1007/s00603-019-01936-z.

    Article  Google Scholar 

  30. GONG Feng-qiang, LUO Song, YAN Jing-yi. Energy storage and dissipation evolution process and characteristics of marble in three tension-type failure tests [J]. Rock Mechanics and Rock Engineering, 2018, 51(11): 3613–3624. DOI: https://doi.org/10.1007/s00603-018-164-4.

    Article  Google Scholar 

  31. GONG Feng-qiang, YAN Jing-yi, LUO Song, LI Xi-bing. Investigation on the linear energy storage and dissipation laws of rock materials under uniaxial compression [J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4237–4255. DOI: https://doi.org/10.1007/s00603-019-01842-4.

    Article  Google Scholar 

  32. TANG Yang, OKUBO S, XU Jiang, PENG Shou-jian. Progressive failure behaviors and crack evolution of rocks under triaxial compression by 3D digital image correlation [J]. Engineering Geology, 2019, 249: 172–185. DOI: https://doi.org/10.1016/j.enggeo.2018.12.026.

    Article  Google Scholar 

  33. LEI Rui-de, ZHANG Zhen-yu, GE Zhao-long, BERTO F, WANG Gang, ZHOU Lei. Deformation localization and cracking processes of sandstone containing two flaws of different geometric arrangements [J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(9): 1959–1977. DOI: https://doi.org/10.1111/ffe.13259.

    Article  Google Scholar 

  34. CAO An-ye, DOU Lin-ming, CAI Wu, GONG Si-yuan, LIU Sai, JING Guang-cheng. Case study of seismic hazard assessment in underground coal mining using passive tomography [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78: 1–9. DOI: https://doi.org/10.1016/j.ijrmms.2015.05.001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-long Yao  (姚旭龙) or Peng Liang  (梁鹏).

Additional information

Foundation item

Projects(51774138, 51804122, 51904105) supported by the National Natural Science Foundation of China; Projects (E2021209148, E2021209052) supported by the Natural Science Foundation of Hebei Province, China

Contributors

The overarching research goals were developed by ZHANG Yan-bo, and YAO Xu-long. YAO Xu-long established the method of wave velocity imaging. The initial draft of the manuscript was written by LIANG Peng, and WANG Ke-xue. SUN Lin, TIAN Bao-zhu, and LIU Xiang-xin participated in the experimental design and guided the experimental process. WANG Shan-yong directed the writing of the thesis and put forward some suggestions. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

ZHANG Yan-bo, YAO Xu-long, LIANG Peng, WANG Ke-xue, SUN Lin, TIAN Bao-zhu, LIU Xiang-xin, and WANG Shan-yong declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yb., Yao, Xl., Liang, P. et al. Fracture evolution and localization effect of damage in rock based on wave velocity imaging technology. J. Cent. South Univ. 28, 2752–2769 (2021). https://doi.org/10.1007/s11771-021-4806-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4806-7

Key words

关键词

Navigation