Skip to main content
Log in

Influence of pre-stretching on quench sensitive effect of high-strength Al−Zn−Mg−Cu-Zr alloy sheet

预拉伸对高强 Al−Zn−Mg−Cu−Zr 合金板材淬火敏感性效应的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The influence of pre-stretching on quench sensitive effect of high strength Al−Zn−Mg−Cu−Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The water-cooled and aged alloy exhibits higher strength than the air-cooled and aged alloy; 2.5% pre-stretching of tensile deformation exerts little effect on strength of water-cooled and aged alloy but increases that of air-cooled and aged one, and therefore the yield strength reduction rate due to slow quenching decreases from about 3.8 % to about 1.0 %, reducing quench sensitive effect. For the air-cooled alloy, pre-stretching increases the sizes of η′ strengthening precipitates but also increases their quantity and the ratio of diameter to thickness, resulting in enhanced strengthening and higher strength after aging. The reason has been discussed based on microstructure examination by TEM and DSC.

摘要

通过室温拉伸测试、 透射电子显微镜(TEM)、 差示扫描量热法(DSC)研究了预拉伸对高强Al−Zn−Mg−Cu−Zr 合金 AA7085 板材淬火敏感性效应的影响. 结果表明: 水冷及时效合金的强度高于空冷及时 效合金的; 2.5% 预拉伸变形对水冷及时效合金的强度影响很小, 但增强了空冷及时效合金的强度, 使 慢冷导致的屈服强度下降率从约 3.8% 减小至约 1.0% , 因而降低了淬火敏感效应. 对于空冷合金, 预 拉伸增加了 η′强化相的尺寸, 也增加了其数量及直径厚度比值, 以获得更好的时效强化效果及更高的 强度. 基于TEM和DSC的表征结果对原因进行了讨论.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHEN J, ZHEN S, YANG S, SHAO W, DAI S. Investigation of precipitation behavior and related hardening in AA 7055 aluminium alloy [J]. Materials Science and Engineering A, 2009, 500: 34–42. DOI: https://doi.org/10.1016/j.msea.2008.09.065.

    Article  Google Scholar 

  2. DUMONT D, DESCHAMPS A. Characterization of precipitation microstructures in aluminium alloys 7040 and 7050 and their relationship to mechanical behavior [J]. Materials Science and Technology, 2004, 20(5): 567–576. DOI: https://doi.org/10.1179/026708304225016662.

    Article  Google Scholar 

  3. TANG J, YANG Z, LIU S, WANG Q, CHEN J, CHAI W, YE L. Quench sensitivity of AA 7136 alloy: Contribution of grain structure and dispersoids [J]. Metallurgical and Materials Transactions A, 2019, 50: 4900–4912. DOI: https://doi.org/10.1007/s11661-019-05397-5.

    Article  Google Scholar 

  4. MA Z, LIU J, YANG Z, LIU S, ZHANG Y. Effect of cooling rate and grain structure on the exfoliation corrosion susceptibility of AA7136 alloy [J]. Materials Characterization, 2020, 168: 110533. DOI: https://doi.org/10.1016/j.matchar.2020.110533.

    Article  Google Scholar 

  5. LIU S D, LI Q, LIN H Q, SUN L, LONG, YE L Y, DENG Y L. Effect of quench-induced precipitation on microstructure and mechanical properties of 7085 aluminum alloy [J]. Materials Design, 2017, 132: 119–128. DOI: https://doi.org/10.1016/j.matdes.2017.06.054.

    Article  Google Scholar 

  6. FENG Lei, PAN Qing-lin, WEI Li-li, HUANG Zhi-qi, LIU Zhi-ming. Through-thickness inhomogeneity of localized corrosion in 7050-T7451 Al alloy thick plate [J]. Journal of Central South University, 2015, 22: 2423–2434. DOI: https://doi.org/10.1007/s11771-015-2769-2.

    Article  Google Scholar 

  7. DOLAN G P, ROBINSON J S. Residual stress reduction in 7175-T73, 6061-T6 and 2017A-T4 aluminium alloys using quench factor analysis [J]. Journal of Materials Processing Technology, 2004, 153–154: 346–351. DOI: https://doi.org/10.1016/j.jmatprotec.2004.04.065.

    Article  Google Scholar 

  8. POLMEAR I. Light alloys: From traditional alloys to nanocrystals [M]. Fourth ed. Oxford: ButterworthHeinemann, 2006.

    Google Scholar 

  9. WANG D, NI D R, MA Z Y. Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy [J]. Materials Science and Engineering A, 2008, 494: 360–366. DOI: https://doi.org/10.1016/j.msea.2008.04.023.

    Article  Google Scholar 

  10. AL-RUBAIE K S, BARROSO E K L, GODEFROID L B. Fatigue crack growth analysis of pre-strained 7475 — T7351 aluminum alloy [J]. International Journal of Fatigue, 2006, 28: 934–942. DOI: https://doi.org/10.1016/j.ijfatigue.2005.09.008.

    Article  Google Scholar 

  11. WATERLOO G, HANSEN V, GJ NNES J, SKJERVOLD S R. Effect of predeformation and preaging at room temperature in Al−Zn−Mg− (Cu, Zr) alloys [J]. Materials Science and Engineering A, 2001, 303: 226–233. DOI: https://doi.org/10.1016/S0921-5093(00)01883-9.

    Article  Google Scholar 

  12. HAN N M, ZHANG X M, LIU S D, KE B, XIN X. Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050 [J]. Materials Science and Engineering A, 2011, 528: 3714–3721. DOI: https://doi.org/10.1016/j.msea.2011.01.068.

    Article  Google Scholar 

  13. LIU Sheng-dan, LI Qun, YE Ling-ying, WANG Qing, DENG Yun-lai, ZHANG Xin-ming. Effects of pre-stretching on mechanical properties and localized corrosion of 7085 aluminum alloy [J]. Journal of Central South University (Science and Technology), 2018, 49: 2152–2160. DOI: https://doi.org/10.11817/j.issn.1672-7207.2018.09.006. (in Chinese)

    Google Scholar 

  14. DESCHAMPS A, LIVET F, BRÉCHET Y. Influence of predeformation on ageing in an Al−Zn−Mg alloy—I. Microstructure evolution and mechanical properties [J]. Acta Materialia, 1999, 47: 281–292. DOI: https://doi.org/10.1016/S1359-6454(98)00293-6.

    Article  Google Scholar 

  15. ROBINSON J S, CUDD R L, TANNER D A. Quench sensitivity and tensile property inhomogeneity in 7010 forgings [J]. Journal of Materials Processing Technology, 2001, 119: 261–267. DOI: https://doi.org/10.1016/S0924-0136(01)00927-X.

    Article  Google Scholar 

  16. LIU S D, LI C B, HAN S Q, ZHANG X M. Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy [J]. Journal of Alloys and Compound, 2015, 625: 34–43. DOI: https://doi.org/10.1016/j.jallcom.2014.10.195.

    Article  Google Scholar 

  17. LIU S D, ZHANG X M, CHEN M A, YOU J H. Influence of aging on quench sensitivity effect of 7055 aluminum alloy [J]. Materials Characterization, 2008, 59: 53–60. DOI: https://doi.org/10.1016/j.matchar.2006.10.019.

    Article  Google Scholar 

  18. TAN Qi. Effects of quenching rate and ageing process on the inhomogeneity of thick plate of aluminum alloy7085 [D]. Changsha, China: Central South University, 2014. (in Chinese)

    Google Scholar 

  19. BUHA J, LUMLEY R N, CROSKY A G. Secondary ageing in an aluminium alloy 7050 [J]. Materials Science and Engineering A, 2008, 492: 1–10. DOI: https://doi.org/10.1016/j.msea.2008.02.039.

    Article  Google Scholar 

  20. YANG Xiu-bo. Research on microstructures and properties of Al−Zn−Mg(Cu) alloy after different heat treatment [D]. Changsha, China: Hunan University, 2014. (in Chinese)

    Google Scholar 

  21. WANG Q, ZHAO Z, ZHAO Y, YAN K, LIU C, ZHANG H. The strengthening mechanism of spray forming Al−Zn−Mg−Cu alloy by underwater friction stir welding [J]. Materials & Design, 2016, 102: 91–99. DOI: https://doi.org/10.1016/j.matdes.2016.04.036.

    Article  Google Scholar 

  22. LIU S, WANG S, YE L, DENG Y, ZHANG X. Flow behavior and microstructure evolution of 7055 aluminium alloy impacted at high strain rates [J]. Materials Science and Engineering A, 2016, 677: 203–210. DOI: https://doi.org/10.1016/j.msea.2016.09.047.

    Article  Google Scholar 

  23. LI X Z, HANSEN V, GJØNNES J, WALLENBERG L R. HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al−Zn−Mg alloys [J]. Acta Materialia, 1999, 47: 2651–2659. DOI: https://doi.org/10.1016/S1359-6454(99)00138-X.

    Article  Google Scholar 

  24. XU X, ZHENG J, LI Z, LUO R, CHEN B. Precipitation in an Al−Zn−Mg−Cu alloy during isothermal aging: atomic-scale HAADF-STEM investigation [J]. Materials Science and Engineering A, 2017, 691: 60–70. DOI: https://doi.org/10.1016/j.msea.2017.03.032.

    Article  Google Scholar 

  25. HOU X, BAI P. Evaluation of strain fields caused by the η′ phase in an Al−Zn−Mg−Cu alloy [J]. Materials Science and Engineering A, 2017, 683: 90–93. DOI: https://doi.org/10.1016/j.msea.2016.10.065.

    Article  Google Scholar 

  26. NIE J F, MUDDLE B C, POLMEAR I J. The effect of precipitate shape and orientation on dispersion strengthening on high strength aluminium alloys [J]. Materials Science Forum, 1996, 217: 1257–1262. DOI: https://doi.org/10.4028/www.scientific.net/msf.217-222.1257.

    Article  Google Scholar 

  27. PORTER D A, EASTERLING K E, SHERIF M. Phase transformations in metals and alloys [M]. Third ed. Florida: CRC Press, 2009. DOI: https://doi.org/10.1201/9781439883570.

    Google Scholar 

  28. DUPASQUIER A, FERRAGUT R, IGLESIAS M M, QUASSO F. Vacancy-solute association in coherent nanostructures formed in a commercial Al−Zn−Mg−Cu alloy [J]. Physica Status Solidi C, 2007, 4: 3526–3529. DOI: https://doi.org/10.1002/pssc.200675772.

    Article  Google Scholar 

  29. SHA G, CEREZO A. Early-stage precipitation in Al−Zn−Mg−Cu alloy (7050) [J]. Acta Materialia, 2004, 52: 4503–4516. DOI: https://doi.org/10.1016/j.actamat.2004.06.025.

    Article  Google Scholar 

  30. FULLER C B, MAHONEY M W, CALABRESE M, MICONA L. Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds [J]. Materials Science and Engineering A, 2010, 527: 2233–2240. DOI: https://doi.org/10.1016/j.msea.2009.11.057.

    Article  Google Scholar 

  31. MUKHOPADHYA A K, YANG Q B, SINGH S R. The influence of zirconium on the early stages of aging of a ternary Al-Zn-Mg alloy [J]. Acta Metallurgica Materialia, 1994, 43: 3083–3091. DOI: https://doi.org/10.1016/0956-7151(94)90406-5.

    Article  Google Scholar 

  32. LÖFFLER H, KOVCS I, LENDVAI J. Decomposition processes in Al−Zn−Mg alloys [J]. Journal of Materials Science, 1983, 18: 2215–2240. DOI: https://doi.org/10.1007/BF00541825.

    Article  Google Scholar 

  33. LI Y Y, KOVARIK L, PHILLIPS P J, HSU Y F, WANG W H, MILLS M J. High-resolution characterization of the precipitation behavior of an Al−Zn−Mg−Cu alloy [J]. Philosophical Magazine Letters, 2012, 92: 166–178. DOI: https://doi.org/10.1080/09500839.2011.652682.

    Article  Google Scholar 

  34. LENDVAI J. The effect of vacancy-rich clusters on the decomposition processes in Al−Zn−Mg alloys [J]. Crystal Research and Technology, 1984, 19: 1341–1346. DOI: https://doi.org/10.1002/crat.2170191017.

    Article  Google Scholar 

  35. WANG D, MA Z Y. Effect of pre-strain on microstructure and stress corrosion cracking of over-aged 7050 aluminum alloy [J]. Journal of Alloys and Compound, 2009, 469: 445–450. DOI: https://doi.org/10.1016/j.jallcom.2008.01.137.

    Article  Google Scholar 

  36. DUMONT D, DESCHAMPS A, BRÉCHET Y. On the relationship between microstructure, strength and toughness in AA 7050 aluminum alloy [J]. Materials Science and Engineering A, 2003, 356: 326–336. DOI: https://doi.org/10.1016/S0921-5093(03)00145-X.

    Article  Google Scholar 

  37. OGURA T, HIROSAWA S, SATO T. Quantitative characterization of precipitate free zones in Al−Zn−Mg(−Ag) alloys by microchemical analysis and nanoindentation measurement [J]. Science and Technology of Advanced Material, 2004, 5: 491–496. DOI: https://doi.org/10.1016/j.stam.2004.02.007.

    Article  Google Scholar 

  38. VIANA F, PINTO A M P. Retrogression and re-ageing of 7075 aluminium alloy: Microstructural characterization [J]. Journal of Materials Processing Technology, 1999, 92–93: 54–59. DOI: https://doi.org/10.1016/S0924-0136(99)00219-8.

    Article  Google Scholar 

  39. BENJAMIN M, MARTIN B, MICHAEL R, OLAF K, CHRISTOPH S. Precipitation kinetics of an aluminium alloy during Newtonian cooling simulated in a differential scanning calorimeter [J]. Thermochimica Acta, 2011, 522: 86–95. DOI: https://doi.org/10.1016/j.tca.2011.02.034.

    Article  Google Scholar 

  40. DESCHAMPS A, BRÉCHET C. Influence of quench and heating rates on the ageing response of an Al−Zn−Mg− (Zr) alloy [J]. Materials Science and Engineering A, 1998, 251: 200–207. DOI: https://doi.org/10.1016/S0921-5093(98)00615-7.

    Article  Google Scholar 

  41. STARINK M J. Analysis of aluminium based alloys by calorimetry: Quantitative analysis of reactions and reaction kinetics [J]. International Materials Reviews, 2004, 49: 191–226. DOI: https://doi.org/10.1179/095066004225010532.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-dan Liu  (刘胜胆).

Additional information

Foundation item

Project(AA17202007) supported by the Special Funding for Innovation-Driven Development of Guangxi Province, China

Contributors

LIU Sheng-dan provided the idea, designed experiment and edited the draft of manuscript. HE Ke-zhun conducted the literature review, performed experiments, analyzed results and wrote the first draft of the manuscript. LI Qun performed experiments and analyzed results. ZHANG Xin-ming and ZHOU Ke-chao edited the draft of manuscript.

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Kz., Li, Q., Liu, Sd. et al. Influence of pre-stretching on quench sensitive effect of high-strength Al−Zn−Mg−Cu-Zr alloy sheet. J. Cent. South Univ. 28, 2660–2669 (2021). https://doi.org/10.1007/s11771-021-4800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4800-0

Key words

关键词

Navigation