Skip to main content
Log in

Periodic electromagnetic signals as potential precursor for seismic activity

一种反应地震前兆活动的周期性电磁信号

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Electromagnetic signals may be a promising precursor to seismic activity which has been observed in many case studies in past decades. However, the correlation and causation between the electromagnetic signals and the seismic activity are still unclear without intensive observation network. In order to find seismoelectromagnetic phenomenon, we deployed AETA (acoustic and electromagnetic testing all-in-one system), a high-density multi-component seismic monitoring system in the China Earthquake Science Experiment site (CESE, in Sichuan Province and Yunnan Province, China) and the capital circle (areas with a distance which is ≤200 km from Beijing), to record electromagnetic and geo-acoustic data across 0.1 Hz–10 kHz. In the course of data collection, we discovered an electromagnetic waveform that occurs on a daily basis. Because the signal generally coincides with sunrise and sunset, we named this phenomenon the SRSS (Sunrise-Sunset) waveform. After conducting three statistical tests based on seismicity and SRSS, we determined that the SRSS waveform is roughly correlated with the onset of seismic activity. It generally occurs at the regions where seismicity occurs. This discovery might have significant implications with respect to the future of earthquake prediction.

摘要

电磁信号是反应地震前兆活动的重要信号,在过去几十年里有很多观测震例和研究实验。但是, 由于没有密集的观测网获取大量的真实数据,电磁信号和地震活动之间的相关性尚不清楚。为了找到 地震强相关的电磁现象,在川滇地区和首都圈布设了高密度的多分量地震监测系统(AETA),来观测 0.1 Hz~10 kHz 的电磁和地声数据。在数据的采集中,发现了电磁信号的波形呈现日周期的特性。该 信号的变化与日升日落同步,因此命名为日升日落波SRSS(Sunrise-Sunset)。本文通过三次震例分析, 发现SRSS 波与地震事件具有强相关性,该信号通常出现在地震活跃的区域。SRSS 波与地震相关性 对地震预测意义重大。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PARSONS T, JI Chen, KIRBY E. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin [J]. Nature, 2008, 454(7203): 509–510. DOI: https://doi.org/10.1038/nature07177.

    Article  Google Scholar 

  2. YUE H, LAY T. Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw9.1) [J]. Geophysical Research Letters, 2011, 38(7): 752–767. DOI: https://doi.org/10.1029/2011gl048700.

    Article  Google Scholar 

  3. LI Rui-hao, FU Zhao-zhu. Local gravity variations before and after the Tangshan earthquake (M=7.8) and the dilatation process [J]. Tectonophysics, 1983, 97(1–4): 159–169. DOI: https://doi.org/10.1016/0040-1951(83)90143-9.

    Article  Google Scholar 

  4. HAN Peng, ZHUANG Jian-cang, HATTORI K, CHEN C H, FEBRIANI F, CHEN Hong-yan, YOSHINO C, YOSHIDA S. Assessing the potential earthquake precursory information in ULF magnetic data recorded in Kanto, Japan during 2000–2010: Distance and magnitude dependences [J]. Entropy, 2020, 22(8): 859. DOI: https://doi.org/10.3390/e22080859.

    Article  Google Scholar 

  5. QIU Zhi-cheng, YONG Shan-shan, WANG Xi-nan. On possible electromagnetic precursors to a significant earthquake (Mw=7.0) occurred in Jiuzhaigou (China) on 8 August 2017 [C]//Proceedings of the 2020 The 3rd International Conference on Information Science and System. Cambridge, United Kingdom, New York, NY, USA: ACM, 2020: 229–234. DOI: https://doi.org/10.1145/3388176.3388202.

    Chapter  Google Scholar 

  6. HELMAN D S. Seismic electric signals (SES) and earthquakes: A review of an updated VAN method and competing hypotheses for SES generation and earthquake triggering [J]. Physics of the Earth and Planetary Interiors, 2020, 302: 106484. DOI: https://doi.org/10.1016/j.pepi.2020.106484.

    Article  Google Scholar 

  7. FLORIOS K, CONTOPOULOS I, CHRISTOFILAKIS V, TATSIS G, CHRONOPOULOS S, REPAPIS C, TRITAKIS V. Pre-seismic electromagnetic perturbations in two earthquakes in northern Greece [J]. Pure and Applied Geophysics, 2020, 177(2): 787–799. DOI: https://doi.org/10.1007/s00024-019-02362-6.

    Article  Google Scholar 

  8. NIKOLOPOULOS D P E. Electromagnetic pre-earthquake precursors: Mechanisms, data and models-A review [J]. Journal of Earth Science & Climatic Change, 2015, 6(1): 250. DOI: https://doi.org/10.4172/2157-7617.1000250.

    Article  Google Scholar 

  9. HAYAKAWA M, HOBARA Y, OHTA K, HATTORI K. The ultra-low-frequency magnetic disturbances associated with earthquakes [J]. Earthquake Science, 2011, 24(6): 523–534. DOI: https://doi.org/10.1007/s11589-011-0814-2.

    Article  Google Scholar 

  10. FRASER-SMITH A C, BERNARDI A, MCGILL P R, LADD M E, HELLIWELL R A, VILLARD O G Jr. Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta Earthquake [J]. Geophysical Research Letters, 1990, 17(9): 1465–1468. DOI: https://doi.org/10.1029/GL017i009p01465.

    Article  Google Scholar 

  11. POTIRAKIS S M, SCHEKOTOV A, ASANO T, HAYAKAWA M. Natural time analysis on the ultra-low frequency magnetic field variations prior to the 2016 Kumamoto (Japan) earthquakes [J]. Journal of Asian Earth Sciences, 2018, 154: 419–427. DOI: https://doi.org/10.1016/j.jseaes.2017.12.036.

    Article  Google Scholar 

  12. SURKOV V V, MOLCHANOV O A, HAYAKAWA M. Pre-earthquake ULF electromagnetic perturbations as a result of inductive seismomagnetic phenomena during microfracturing [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(1): 31–46. DOI: https://doi.org/10.1016/S1364-6826(02)00117-7.

    Article  Google Scholar 

  13. HAYAKAWA M, PULINETS S, PARROT M, MOLCHANOV O A. Recent progress in seismo electromagnetics and related phenomena [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2006, 31(4–9): 129–131. DOI: https://doi.org/10.1016/j.pce.2006.05.001.

    Article  Google Scholar 

  14. CHEN Hua-ran, YANG Dong-mei, LI Qi, ZHU Rong, JIANG Chun, WANG Jian-guo. Observation and research on seismic precursor information of electromagnetic emissions [J]. Earthquake Research in China, 2008, 24(2): 180–186. (in Chinese)

    Google Scholar 

  15. YAMADA I, MASUDA K, MIZUTANI H. Electromagnetic and acoustic emission associated with rock fracture [J]. Physics of the Earth and Planetary Interiors, 1989, 57(1, 2): 157–168. DOI: https://doi.org/10.1016/0031-9201(89)90225-2.

    Article  Google Scholar 

  16. ZHU Tao, ZHOU Jian-guo, WANG Hong-qiang. Electromagnetic emissions during dilating fracture of a rock [J]. Journal of Asian Earth Sciences, 2013, 73: 252–262. DOI: https://doi.org/10.1016/j.jseaes.2013.05.004.

    Article  Google Scholar 

  17. ZHOU Z L, LI X B, WAN G X. The relation between the frequency of electromagnetic radiation (EMR) induced by rock fracture and attribute parameters of rock masses [J]. Chinese Journal of Geophysics, 2009, 52(1): 259–265. (in Chinese)

    Article  Google Scholar 

  18. MA Q Z, FANG G Q, LI W, ZHOU J N. Electromagnetic anomalies before the 2013 Lushan M_S7.0 earthquake [J]. Acta Seismologica Sinica, 2013, 35(5): 717–730. DOI: https://doi.org/10.3969/j.issn.0253-3782.2013.05.010.

    Google Scholar 

  19. XIE T, LIU L, LU J, LI M, YAO L, WANG Y L, YU C. Retrospective analysis on electromagnetic anomalies observed by ground fixed station before the 2008 Wenchuan M_S8.0 earthquake [J]. Chinese Journal of Geophysics, 2018, 65(7): 1922–1937. (in Chinese)

    Google Scholar 

  20. HATTORI K. ULF geomagnetic changes associated with large earthquakes [J]. Terrestrial, Atmospheric and Oceanic Sciences, 2004, 15(3): 329. DOI: https://doi.org/10.3319/tao.2004.15.3.329(ep).

    Article  Google Scholar 

  21. LIU J Y, CHEN Y I, CHUO Y J, TSAI H F. Variations of ionospheric total electron content during the Chi-Chi Earthquake [J]. Geophysical Research Letters, 2001, 28(7): 1383–1386. DOI: https://doi.org/10.1029/2000GL012511.

    Article  Google Scholar 

  22. HUANG Qing-hua. One possible generation mechanism of co-seismic electric signals [J]. Proceedings of the Japan Academy Ser B: Physical and Biological Sciences, 2002, 78(7): 173–178. DOI: https://doi.org/10.2183/pjab.78.173.

    Article  Google Scholar 

  23. WANG X A, YONG S S, XU B X, LIANG Y W, BAI Z Q, AN H Y, ZHANG X, HUANG J P, XIE Z, LIN K, HE C J, LI Q P. Research and implementation of multi-component seismicmonitoring system AETA [J]. Acta Scientiarum Naturelium Universitatis Pekinensis, 2018, 54: 487–494. (in Chinese)

    Google Scholar 

  24. WANG Xin-an, YONG Shan-shan, HUANG Ji-pan, LÜ Ya-xuan, ZHANG Xing, LIANG Yi-wen. Earthquake prediction research based on data of ETA [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(2): 209–214. DOI: https://doi.org/10.13209/j.0479-8023.2019.007. (in Chinese)

    Google Scholar 

  25. YONG Shan-shan, WANG Xin-an, PANG Rui-tao, JIN Xiu-ru, ZENG Jing-wu, HAN Chao-xiang, XU Bo-xing. Development of inductive magnetic sensor for Multi-component seismic monitoring system AETA [J]. Acta Scientiarum Naturelium Universitatis Pekinensis, 2018, 54: 495–501. (in Chinese)

    Google Scholar 

  26. HUANG Ji-pan, YONG Shan-shan, WANG Xin-an, PANG Rui-tao, ZENG Jing-wu. A geo-acoustic sensing probe for seismic monitoring [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(2): 193–198. (in Chinese)

    Google Scholar 

  27. KE Y L, LIU Y W, ZHANG L, LI Y, CHEN Z, BAO C, LIANG H, CHEN X F, YAO Y. Establishment and analysis of the high-precision hydrogen observation array in China earthquake science experiment site [J]. Earthquake, 2018, 38: 35–48. (in Chinese)

    Google Scholar 

  28. LÜ Ya-xuan, WANG Xin-an, HUANG Ji-pan, YONG Shan-shan. Research on Jiuzhaigou Ms7.0 earthquake based on earthquake based on AETA electromagnatic disturbance data [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(6): 1007–1013. DOI: https://doi.org/10.13209/j.0479-8023.2019.108. (in Chinese)

    Google Scholar 

Download references

Acknowledgements

We appreciate the support and assistance of the China Earthquake Administration, the Sichuan Earthquake Administration (and its subordinate earthquake bureaus), the Yunnan Earthquake Administration (and its subordinate earthquake bureaus), and the Hebei Earthquake Administration (and its subordinate earthquake bureaus), China. We are grateful for the kind support and guidance of YANG Fu-qing and WANG Yang-yuan. We would also like to thank Shenzhen Valley Venture for their service and improvement upon the AETA instrumentation.

Author information

Authors and Affiliations

Authors

Contributions

YONG Shan-shan conceptualized the problem, wrote the main manuscript text, and contributed to some figure preparation. WANG Xin-an contributed to the manuscript framework and reviewed the manuscript. GUO Qin-meng, WANG Jing, YANG Chao and JIANG Bing-hui wrote part of the manuscript text and contributed to some data and figure preparation. ZHANG Xing reviewed the manuscript.

Corresponding author

Correspondence to Shan-shan Yong  (雍珊珊).

Additional information

Conflict of interest

YONG Shan-shan, WANG Xin-an, ZHANG Xing, GUO Qin-meng, WANG Jing, YANG Chao, JIANG Bing-hui declare that they have no conflict of interest.

Foundation item: Projects(KJYY20170721151955849, JCYJ20190808161401653) supported by Fundamental Research Grant from Shenzhen Science & Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, Ss., Wang, Xa., Zhang, X. et al. Periodic electromagnetic signals as potential precursor for seismic activity. J. Cent. South Univ. 28, 2463–2471 (2021). https://doi.org/10.1007/s11771-021-4739-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4739-1

Key words

关键词

Navigation