Skip to main content
Log in

Stability analysis of underground surrounding rock mass based on block theory

基于块体理论的地下围岩稳定性分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Evaluation of the performance of existing support in underground tunnels is of great importance for production and interests. Based on field investigation, the shape and number of joints and fractures were investigated in the mining area. Then, the stability of each structural blocks is analyzed by 3D wedge stability analysis software (Unwedge). Moreover, a new analysis method based on critical block theory is applied to analyze the stability of excavated laneways in continuous and discontinuous rock and monitor the stress changes in a fractured tunnel rock mass. The test results indicate that the 3D wedge stability analysis software for underground excavation can evaluate deep tunnel support. Besides, there is no direct relation between the size of the block and the instability of the tunnel. The support method, on large and thick key blocks, needs to be improved. In a broken tunnel section, U-shaped steel support can effectively promote the stress state of the surrounding rock. By monitoring the surrounding rock, it is proven that the vibrating string anchor stress monitoring system is an efficient and real-time method for tunnel stability evaluation.

摘要

在深部巷道支护中对现有支护的评价至关重要, 对安全生产具有重要意义。通过现场布置与测 量, 对矿区的节理裂隙进行了调查, 确定了岩体中节理的形态和数量。然后, 利用三维楔块稳定分析 软件(Unwedge)对地下开挖的各个结构面块体进行稳定性分析。应用关键块体理论对连续和不连续岩 体中开挖巷道的稳定性进行了分析, 并对裂隙围岩的应力变化进行了监测。结果表明: 三维楔形体稳 定性分析软件可以对深部巷道支护进行评价; 块体大小与巷道失稳没有直接关系, 大厚度关键块的支 护方法有待改进; 在巷道软弱破碎段, U 型钢支护能有效改善围岩应力状态。通过对巷道围岩的监测, 证明了振动弦锚应力监测系统是一种高效、实时的地下围岩稳定性评价方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MENG Xiang-rui, PENG Rui, ZHAO Guang-ming, LI Ying-ming. Roadway engineering mechanical properties and roadway structural instability mechanisms in deep wells [J]. KSCE Journal of Civil Engineering, 2018, 22(5): 1954–1966. DOI: https://doi.org/10.1007/s12205-017-1298-y.

    Article  Google Scholar 

  2. JIANG Li-shuai, MITR H S, MA Nian-jie, ZHAO Xi-dong. Effect of foundation rigidity on stratified roadway roof stability in underground coal mines [J]. Arabian Journal of Geosciences, 2016, 9(1): 32–44. DOI: https://doi.org/10.1007/s12517-015-2033-y.

    Article  Google Scholar 

  3. PENG Rui, MENG Xiang-rui, ZHAO Guang-ming, LI Ying-ming, ZHU Jian-ming. Experimental research on the structural instability mechanism and the effect of multi-echelon support of deep roadways in a kilometer-deep well [J]. Plos One, 2018, 13(2): 1–24. DOI: https://doi.org/10.1371/journal.pone.0192470.

    Article  Google Scholar 

  4. WANG Q, PAN R, JIANG B, LI S C, HE M C, SUN H B, WANG L, QIN Q, YU H C, LUAN Y C. Study on failure mechanism of roadway with soft rock in deep coal mine and confined concrete support system [J]. Engineering Failure Analysis, 2017, 81: 155–177. DOI: https://doi.org/10.1016/j.engfailanal.2017.08.003.

    Article  Google Scholar 

  5. MENG Qing-bin, HAN Li-jun, XIAO Yu, LI Hao, WEN Sheng-yong, ZHANG Jian. Numerical simulation study of the failure evolution process and failure mode of surrounding rock in deep soft rock roadways [J]. International Journal of Mining Science and Technology, 2016, 26(2): 209–221. DOI: https://doi.org/10.1016/j.ijmst.2015.12.006.

    Article  Google Scholar 

  6. KANG H P, LIN J, FAN M J. Investigation on support pattern of a coal mine roadway within soft rocks-a case study [J]. International Journal of Coal Geology, 2015, 140: 31–40. DOI: https://doi.org/10.1016/j.coal.2015.01.003.

    Article  Google Scholar 

  7. XUE Yi, GAO Feng, LIU Xing-guang, LIANG Xin. Permeability and pressure distribution characteristics of the roadway surrounding rock in the damaged zone of an excavation [J]. International Journal of Mining Science and Technology, 2017, 27(2): 211–219. DOI: https://doi.org/10.1016/j.ijmst.2017.01.003.

    Article  Google Scholar 

  8. ZUO Y J, WANG J, DONG L J, SHU W W, YU M L, SUN W J B, WU Z H. Optimization for U-shaped steel support in deep tunnels under coupled static-dynamic loading [J]. Advances in Civil Engineering, 2019, Article 4172103. DOI: https://doi.org/10.1155/2019/4172103.

  9. LI X B, GONG F Q, WANG S F, LI D Y, TAO M, ZHOU J, HUNG L Q, MA C D, DU K, FENG F. Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rockburst in deep hard rock mines [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 708–723. DOI: https://doi.org/10.13722/j.cnki.jrme.2018.1496. (in Chinese)

    Google Scholar 

  10. LI X B, PENG D X, FENG F, LI X S. Stability analysis of horizontal insulating pillar in deep mining from caving to filling method on the basis of refined plate theory [J]. Journal of China University of Mining & Technology, 2019, 48(3): 484–494. DOI:https://doi.org/10.13247/j.cnki.jcumt.001003. (in Chinese)

    Google Scholar 

  11. LI Xi-bing, FENG Fan, LI Di-yuan. Numerical simulation of rock failure under static and dynamic loading by splitting test of circular ring [J]. Engineering Fracture Mechanics, 2017, 188: 184–201. DOI:https://doi.org/10.1016/j.engfracmech.2017.08.022.

    Article  Google Scholar 

  12. LI X B, GONG F Q, TAO M, DONG L J, DU K, MA C D, ZHOU Z L, YIN T B. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 767–782. DOI: https://doi.org/10.1016/j.jrmge.2017.04.004.

    Article  Google Scholar 

  13. CHENG G W, LI L C, ZHU W C, YANG T H, TANG C A, ZHENG Y, WANG Y. Microseismic investigation of mining-induced brittle fault activation in a Chinese coal mine [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104096. DOI: https://doi.org/10.1016/j.ijrmms.2019.104096.

    Article  Google Scholar 

  14. LIU X G, ZHU W C, GUAN K, ZHANG H X. Effect of shaft pillar extraction on stability of main shaft: A case study at Xincheng gold mine, China [J]. Mathematical Problems in Engineering, 2018, Article 1652312. DOI: https://doi.org/10.1155/2018/1652312.

  15. LIU C, LIU X L, PENG X C, WANG E Z, WANG S J. Application of 3D-DDA integrated with unmanned aerial vehicle-laser scanner (UAV-LS) photogrammetry for stability analysis of a blocky rock mass slope [J]. Landslides, 2019, 16(9): 1645–1661. DOI: https://doi.org/10.1007/s10346-019-01196-6.

    Article  Google Scholar 

  16. GONZÁLEZ-PALACIO C, MENÉNDEZ-DÍAZ A, ÁLVAREZ-VIGIL A E, GONZÁLEZ-NICIEZA C. Identification of non-pyramidal key blocks in jointed rock masses for tunnel excavation [J]. Computers and Geotechnics, 2005, 32(3): 179–200. DOI: https://doi.org/10.1016/j.compgeo.2005.01.004.

    Article  Google Scholar 

  17. LIU X G, ZHU W C, YU Q L, CHEN S J, GUAN K. Estimating the joint roughness coefficient of rock joints from translational overlapping statistical parameters [J]. Rock Mechanics and Rock Engineering, 2019, 52(3): 753–769. DOI: https://doi.org/10.1007/s00603-018-1643-6.

    Article  Google Scholar 

  18. WANG S H, HUANG R Q, NI P P, JEON S. Advanced discretization of rock slope using block theory within the framework of discontinuous deformation analysis [J]. Geomechanics and Engineering, 2017, 12(4): 723–738. DOI: https://doi.org/10.12989/gae.2017.12.4.723.

    Article  Google Scholar 

  19. JIA Chao, LI Yong, LIAN Ming-yuan, ZHOU Xiao-yong. Jointed surrounding rock mass stability analysis on an underground cavern in a hydropower station based on the extended key block theory [J]. Energies, 2017, 10(4): 563–580. DOI: https://doi.org/10.3390/en10040563.

    Article  Google Scholar 

  20. HU Jian-hua, YANG Chun, ZHOU Ke-ping, LI Jie-lin, GAO Feng. Stability of undercut space in fragment orebody based on key block theory [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1946–1954. DOI: https://doi.org/10.1016/S1003-6326(16)64305-4.

    Article  Google Scholar 

  21. GOODMAN R E. Block theory and its application to rock engineering [J]. Prentice-Hall, 1985, 26: 103–105. DOI: https://doi.org/10.1016/0013-7952(88)90010-5.

    Google Scholar 

  22. KOCHARYAN G G, KULYUKIN A M. Construction of a three-dimensional block structure on the basis of jointed rock parameters estimating the stability of underground workings [J]. Soil Mechanics and Foundation Engineering, 1994, 31: 62–66. DOI: https://doi.org/10.1016/0148-9062(95)90195-7.

    Article  Google Scholar 

  23. KOCHARYAN G G, KULYUKIN A M. Study of caving features for underground workings in a rock mass of block structure with dynamic action. Part II. Mechanical properties of interblock gaps [J]. Journal of Mining Science, 1994, 30: 437–446. DOI: https://doi.org/10.1007/BF02047334.

    Article  Google Scholar 

  24. KOCHARYAN G G. Study of caving features for underground workings in a rock mass of block structure with dynamic action. Part III. Analysis of the stability of an individual rock block in the roof of a working [J]. Journal of Mining Science, 1994, 30: 525–532. DOI: https://doi.org/10.1007/BF02047320.

    Article  Google Scholar 

  25. KOCHARYAN G G, BRIGADIN I V, KARYAKIN A G, KULYUKIN A M, IVANOV E A. Study of caving features for underground workings in a rock mass of block structure with dynamic action. Part IV. effect of rock mass structure on the stability of mine workings [J]. Journal of Mining Science, 1995, 31: 1–7. DOI: https://doi.org/10.1007/BF02046883.

    Article  Google Scholar 

  26. WANG Shu-hong, NI Peng-peng. Application of block theory modeling on spatial block topological identification to rock slope stability analysis [J]. International Journal of Computational Methods, 2013, 11: 1350044. DOI: https://doi.org/10.1142/S0219876213500448.

    Article  MATH  Google Scholar 

  27. GREIF V, VLCKO J. Key block theory application for rock slope stability analysis in the foundations of medieval castles in Slovakia [J]. Journal of Cultural Heritage, 2013, 14(4): 359–364. DOI: https://doi.org/10.1016/j.culher.2012.09.001.

    Article  Google Scholar 

  28. DONG Long-jun, SUN Dao-yuan, LI Xi-bing, ZHOU Zi-long. Interval non-probabilistic reliability of a surrounding jointed rockmass in underground engineering: A case study [J]. IEEE Access, 2017, 5: 18804–18817. DOI: https://doi.org/10.1109/ACCESS.2017.2745705.

    Article  Google Scholar 

  29. KRASNOVSKY A A, MIRENKOV V E. Identification of weakenings in a rock block [J]. Journal of Mining Science, 2010, 46(2): 113–119. DOI: https://doi.org/10.1007/s10913-010-0015-8.

    Article  Google Scholar 

  30. HATZOR Y. The block failure likelihood: A contribution to rock engineering in blocky rock masses [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 1591–1597. DOI: https://doi.org/10.1016/0148-9062(93)90162-7.

    Article  Google Scholar 

  31. CHEN Gang. Probabilistic key block analysis of a mine ventilation shaft stability-a case study [J]. Geomechanics & Geoengineering, 2012, 7(4): 255–262. DOI: https://doi.org/10.1080/17486025.2011.592609.

    Article  Google Scholar 

  32. WU Wu-xing, GONG Feng-qiang, YANG Wei-min. Experimental simulation study of spalling in deep rectangular tunnel with plastic fine grain marble [J]. Tunnelling and Underground Space Technology, 2020, 98: 103319. DOI: https://doi.org/10.1016/j.tust.2020.103319.

    Article  Google Scholar 

  33. GONG Feng-qiang, WU Wu-xing, LI Tian-bin, SI Xue-feng. Experimental simulation and investigation of spalling failure of rectangular tunnel under different three-dimensional stress states [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 122: 104081. DOI: https://doi.org/10.1016/j.ijrmms.2019.104081.

    Article  Google Scholar 

  34. XIA Ming, GONG Feng-qiang. Effects of loading waveforms on rock damage using particle simulation method [J]. Journal of Central South University, 2018, 25(7): 1755–1765. DOI: https://doi.org/10.1007/s11771-018-3866-9.

    Article  Google Scholar 

  35. LUO Yong, GONG Feng-qiang, LI Xi-bing, WANG Shan-yong. Experimental simulation investigation of influence of depth on spalling characteristics in circular hard rock tunnel [J]. Journal of Central South University, 2020, 27(3): 891–910. DOI: https://doi.org/10.1007/s11771-020-4339-5.

    Article  Google Scholar 

  36. URBANCIC T I, TRIFU C I. Recent advances in seismic monitoring technology at Canadian mines [J]. Journal of Applied Geophysics, 2000, 45(4): 225–237. DOI: https://doi.org/10.1016/S0926-9851(00)00030-6.

    Article  Google Scholar 

  37. DONG Long-jun, SHU Wei-wei, LI Xi-bing, HAN Guang-jie, ZOU Wei. Three dimensional comprehensive analytical solutions for locating sources of sensor networks in unknown velocity mining system [J]. IEEE Access, 2017, 5: 11337–11351. DOI: https://doi.org/10.1109/ACCESS.2017.2710142.

    Article  Google Scholar 

  38. DONG Long-jun, SUN Dao-yuan, LI Xi-bing, DU Kun. Theoretical and experimental studies of localization methodology for ae and microseismic sources without pre-measured wave velocity in mines [J]. IEEE Access, 2017, 5: 16818–16828. DOI: https://doi.org/10.1109/ACCESS.2017.2743115.

    Article  Google Scholar 

  39. DONG L J, WESSELOO J, POTVIN Y, LI X B. Discrimination of mine seismic events and blasts using the Fisher classifier naive Bayesian classifier and logistic regression [J]. Rock Mechanics and Rock Engineering, 2016, 49(1): 183–211. DOI: https://doi.org/10.1007/s00603-015-0733-y.

    Article  Google Scholar 

  40. DONG L J, WESSELOO J, POTVIN Y, LI X B. Discriminant models of blasts and seismic events in mine seismology [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 282–291. DOI: https://doi.org/10.1016/j.ijrmms.2016.04.021.

    Article  Google Scholar 

  41. KEMENY J, POST R. Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces [J]. Computers & Geosciences, 2003, 29: 65–77. DOI: https://doi.org/10.1016/S0098-3004(02)00106-1.

    Article  Google Scholar 

  42. SUN G H, ZHENG H, HUANG Y Y. Stability analysis of statically indeterminate blocks in key block theory and application to rock slope in Jinping-I Hydropower Station [J]. Engineering Geology, 2015, 186(SI): 57–67. DOI: https://doi.org/10.1016/j.enggeo.2014.09.012.

    Article  Google Scholar 

  43. FEKETE S, DIEDERICHS M. Integration of three-dimensional laser scanning with discontinuum modelling for stability analysis of tunnels in blocky rockmasses [J]. International Journal of Rock Mechanics And Mining Sciences, 2013, 57: 11–23. DOI: https://doi.org/10.1016/j.ijrmms.2012.08.003.

    Article  Google Scholar 

  44. GREIF V, VLCKO J. Stability of undercut space in fragment orebody based on key block theory [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1946–1954. DOI: https://doi.org/10.1016/S1003-6326(16)64305-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LIN Jian-yun, ZUO Yu-jun and WANG Jian analyzed the calculation results and wrote the article; ZHENG Lu-jing collected the construction site information; WANG Jian and CHEN Bin carried out the numerical simulation; SUN Wen-ji-bin and LIU Hao processed the data; and ZUO Yu-jun offered useful suggestions for the preparation and writing of the paper. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Yu-jun Zuo  (左宇军).

Additional information

Conflicts of interest

LIN Jian-yun, ZUO Yu-jun, WANG Jian, ZHENG Lu-jing, CHEN Bin, SUN Wen-ji-bin and LIU Hao declare that they have no conflict of interest.

Foundation item: Projects(51964007, 51774101) supported by the National Natural Science Foundation of China; Project(2016-4011) supported by the High-level Innovative Talents Training Project in Guizhou Province, China; Project(2019-5619) supported by the Guizhou Mining Power Disaster Early Warning and Control Technology Innovation Team, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Jy., Zuo, Yj., Wang, J. et al. Stability analysis of underground surrounding rock mass based on block theory. J. Cent. South Univ. Technol. 27, 3040–3052 (2020). https://doi.org/10.1007/s11771-020-4527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4527-3

Key words

关键词

Navigation