Skip to main content
Log in

Calculating changes in fractal dimension of surface cracks to quantify how the dynamic loading rate affects rock failure in deep mining

动态加载率对深部岩石破坏过程裂隙分形维数的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The split-Hopkinson pressure bar (SHPB) and digital image correlation (DIC) techniques are combined to analyze the dynamic compressive failure process of coal samples, and the box fractal dimension is used to quantitatively analyze the dynamic changes in the coal sample cracks under impact load conditions with different loading rates. The experimental results show that the fractal dimension can quantitatively describe the evolution process of coal fractures under dynamic load. During the dynamic compression process, the evolution of the coal sample cracks presents distinct stages. In the crack propagation stage, the fractal dimension increases rapidly with the progress of loading, and in the crack widening stage, the fractal dimension increases slowly with the progress of loading. The initiation of the crack propagation phase of the coal samples gradually occurs more quickly with increasing loading rate; the initial cracks appear earlier. At the same loading time point, when the loading rate is greater, the fractal dimension of the cracks observed in the coal sample is greater.

摘要

本文采用高速摄像与数字散斑法相结合的方法记录煤样动态破坏过程, 并通过图像处理对高速摄影捕捉到的试样图片进行裂隙提取, 采用盒分形维数定量描述煤样裂隙, 得到了不同加载率冲击载荷下煤样动态裂隙的分形维数变化特性. 结果表明, 分形方法可以有效地定量描述动载荷作用下煤样裂隙演化过程. 在动态加载过程中, 煤体裂隙演化呈现明显的阶段性; 在裂隙扩展阶段, 分形维数随着加载的进行迅速增大; 在裂隙宽度增加阶段, 分形维数随着加载的进行缓慢增大; 在动态加载过程中, 煤样裂隙扩展阶段时间随着加载率的增大而逐渐延长, 随着加载率的增大, 裂纹初始产生时间提早; 在相同的加载时间内, 分形维数随着加载率的增大而逐渐增大.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MANDELBROT B B. The fractal geometry of nature [M]. New York: W H Freeman, 1982.

    MATH  Google Scholar 

  2. CAMPBELL P, ABHYANKAR S. Fractals form chance and dimension [J]. Mathematical Intelligencer, 1978, 1(1): 35–37. DOI: https://doi.org/10.1007/BF03023043.

    Article  Google Scholar 

  3. XIE He-ping. Fractal kinematics of crack propagation in geomaterials [J]. Journal of China University of Mining & Technology, 1995, 5(1): 1–8. DOI: https://doi.org/10.1016/0013-7944(94)00203-T. (in Chinese)

    Google Scholar 

  4. JIANG Yao-dong, PAN Yi-shan, JIANG Fu-xing, DOU Lin-ming, JU Yang. State of the art review on mechanism and prevention of coal bumps in China [J]. Journal of China Coal Society, 2014, 39(2): 205–213. DOI: https://doi.org/10.13225/j.cnki.jccs.2013.0024. (in Chinese)

    Google Scholar 

  5. DOU Lin-ming, JIANG Yao-dong, CAO An-ye, LIU Hai-shun, GONG Si-yuan, CAI Wu, ZHU Guang-an. Monitoring and pre-warning of rockburst hazard with technology of stress field and wave field in underground coalmines [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 803–811. DOI: https://doi.org/10.13722/j.cnki.jrme.2016.0756. (in Chinese)

    Google Scholar 

  6. AHAMED M A A, PERERA M S A, LI Dong-yin, RANJITH P G, MATTHAI S K. Proppant damage mechanisms in coal seam reservoirs during the hydraulic fracturing process: A review [J]. Fuel, 2019, 253: 615–629. DOI: https://doi.org/10.1016/j.fuel.2019.04.166.

    Article  Google Scholar 

  7. KIYAMA T, NISHIMOTO S, FUJIOKA M, XUE Zi-qiu, ISHIJIMA Y, PAN Zhe-jun, CONNELL D L. Coal swelling strain and permeability change with injecting liquid/supercritical CO2 and N2 at stress- constrained conditions [J]. International Journal of Coal Geology, 2011, 85(1): 56–64. DOI: https://doi.org/10.1016/j.coal.2010.09.010.

    Article  Google Scholar 

  8. XU Jiang, SU Xiao-peng, CHENG Li-chao, WANG Lei, LIU Jing, FENG Dan. Evolution characteristics of meso-crack of gas-filled raw coal under compression-shear stress [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3): 458–467. DOI: https://doi.org/10.3969/j.issn.1000-6915.2014.03.002. (in Chinese)

    Google Scholar 

  9. ZHAO Yi-xin, LIU Shi-min, ZHAO Gao-feng, DEREK E, JIANG Yao-dong, HAN Jing-li. Failure mechanisms in coal: Dependence on strain rate and microstructure [J]. Journal of Geophysical Research Solid Earth, 2015, 119(9): 6924–6935. DOI: https://doi.org/10.1002/2014JB011198.

    Article  Google Scholar 

  10. LI Zhen-tao, LIU Da-meng, CAI Yi-dong, RANJITH P G, YAO Yan-bin. Multi-scale quantitative characterization of 3-D pore-fracture networks in bituminous and anthracite coals using FIB-SEM tomography and X-ray μ-CT [J]. Fuel, 2017, 209: 43–53. DOI: https://doi.org/10.1016/j.fuel.2017.07.088.

    Article  Google Scholar 

  11. GONG Feng-qiang, YE Hao, LUO Yong. Rate effect on the burst tendency of coal-rock combined body under low loading rate range [J]. Journal of China Coal Society, 2017, 42(11): 2852–2860. DOI: https://doi.org/10.13225/j.cnki.jccs.2017.0159. (in Chinese)

    Google Scholar 

  12. GONG Feng-qiang, SI Xue-feng, LI Xi-bing, WANG Shan-yong. Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 211–219. DOI: https://doi.org/10.1016/j.ijrmms.2018.12.005.

    Article  Google Scholar 

  13. GONG Feng-qiang, ZHAO Gao-feng. Dynamic indirect tensile strength of sandstone under different loading rates [J]. Rock Mechanics & Rock Engineering, 2013, 47(6): 2271–2278. DOI: https://doi.org/10.1007/s00603-013-0503-7.

    Article  Google Scholar 

  14. KLEPACZKO J R, BASSIM M N, HSU T. Fracture toughness of coal under quasi-static and impact loading [J]. Engineering Fracture Mechanics, 1984, 19(2): 305–316. DOI: https://doi.org/10.1016/0013-7944(84)90025-0.

    Article  Google Scholar 

  15. ZIPF R K, BIENIAWSKI Z T. Mixed-mode fracture toughness testing of coal [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1990, 27(6): 479–493. DOI: https://doi.org/10.1016/0148-9062(90)91000-W.

    Article  Google Scholar 

  16. SHAN Ren-liang, CHENG Rui-qiang, GAO Wen-jiao. Study on dynamic constitutive model of anthracite of Yunjialing coal mine [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2258–2263. DOI: https://doi.org/10.1016/S1872-1508(06)60035-1. (in Chinese)

    Google Scholar 

  17. LUNDBERG B. A split Hopkinson bar study of energy absorption in dynamic rock fragmentation [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1976, 13(6): 187–197. DOI: https://doi.org/10.1016/0148-9062(76)91285-7.

    Article  Google Scholar 

  18. ZHAO Yi-xin, GONG Shuang, ZHANG Cheng-guo, ZHANG Zhen-nan, JIANG Yao-dong. Fractals characteristics of crack propagation in coal under impact loading [J]. Fractals-complex Geometry Patterns & Scaling in Nature & Society, 2018, 26(2): 1840014. DOI: https://doi.org/10.1142/S0218348X18400145.

    Google Scholar 

  19. ZHAO Yi-xin, GONG Shuang, HAO Xian-jie, PENG Yan, JIANG Yao-dong. Effects of loading rate and bedding on the dynamic fracture toughness of coal: Laboratory experiments [J]. Engineering Fracture Mechanics, 2017, 178: 375–391. DOI: https://doi.org/10.1016/j.engfracmech.2017.03.011.

    Article  Google Scholar 

  20. XIA K W, ARES J R, HIROO K, JAMES R R. Laboratory earthquakes along inhomogeneous faults: Directionality and supershear [J]. Science, 2005, 308(5722): 681–684. DOI: https://doi.org/10.1126/science.1108193.

    Article  Google Scholar 

  21. XIA K W, ARES J R, HIROO K, JAMES R R. Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition [J]. Science, 2004, 303(5665): 1859–1861. DOI: https://doi.org/10.1126/science.1094022.

    Article  Google Scholar 

  22. ZHANG Xi-hong, HAO Hong, MA Guo-wei. Laboratory test and numerical simulation of laminated glass window vulnerability to debris impact [J]. International Journal of Impact, 2013, 55: 49–62. DOI: https://doi.org/10.1016/j.ijimpeng.2013.01.002.

    Article  Google Scholar 

  23. ZHANG Xi-hong, HAO Hong, MA Guo-wei. Dynamic material model of annealed soda-lime glass [J]. International Journal of Impact, 2015, 77: 108–119. DOI: https://doi.org/10.1016/j.ijimpeng.2014.11.016.

    Article  Google Scholar 

  24. ZHAO Hong-bao, WANG Zhong-wei, ZHANG Huan, LI Wei. Effects of dynamic loads on development of internal microstructure and distribution of new surface fractures of coal [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5): 971–979. DOI: https://doi.org/10.13722/j.cnki.jrme.2015.1541. (in Chinese)

    Google Scholar 

  25. HAN Xiu-hui, LI Cheng-wu, XING Tong-zhen, GAO Ping-bo. Experimental study on coal impact fracturing based on temporal and spatial evolution of deformation field [J]. Journal of China Coal Society, 2016, 41(11): 2743–2755. DOI: https://doi.org/10.13225/j.cnki.jccs.2015.1984. (in Chinese)

    Google Scholar 

  26. LIU Xiao-hui, DAI Feng, LIU Jian-feng, ZHANG Ru. Brazilian splitting tests on coal rock considering bedding direction under static and dynamic loading rate [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 10: 2098–2105. DOI: https://doi.org/10.13722/j.cnki.jrme.2015.0608. (in Chinese)

    Google Scholar 

  27. AI Di-hao, ZHAO Yue-chao, WANG Qi-fei, LI Cheng-wu. Experimental and numerical investigation of crack propagation and dynamic properties of rock in SHPB indirect tension test [J]. International Journal of Impact Engineering, 2019, 126(2019): 135–146. DOI: https://doi.org/10.1016/j.ijimpeng.2019.01.001.

    Article  Google Scholar 

  28. XIE He-ping. Fractal: An introduction to rock mechanics [M]. Beijing: Science Press, 1996.

    Google Scholar 

  29. MANDELBROT B B. How long is the coast of Britain? statistical self-similarity and fractional dimension [J]. Science, 1967, 156(3775): 636–638. DOI: https://doi.org/10.1126/science.156.3775.636.

    Article  Google Scholar 

  30. ROLPH S. Fractal geometry: Mathematical foundations and applications [J]. Mathematical Gazette, 1990, 74(469): 288–317. DOI: https://doi.org/10.2307/3619861.

    Google Scholar 

  31. XING H Z, ZHANG Q B, BRATHWAITE C H, PAN B, ZHAO J. High-speed photography and digital optical measurement techniques for geomaterials: Fundamentals and applications [J]. Rock Mechanics & Rock Engineering, 2017, 50(6): 1611–1659. DOI: https://doi.org/10.1007/s00603-016-1164-0.

    Article  Google Scholar 

  32. HUANG Sheng, XIA Kai-wen, YAN Fei, FENG Xia-ting. An experimental study of the rate dependence of tensile strength softening of long you sandstone [J]. Rock Mechanics & Rock Engineering, 2010, 43(6): 677–683. DOI: https://doi.org/10.1007/s00603-010-0083-8.

    Article  Google Scholar 

  33. DAI Feng, HUANG Sheng, XIA Kai-wen, TAN Zhuo-ying. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar [J]. Rock Mechanics & Rock Engineering, 2010, 43(6): 657–666. DOI: https://doi.org/10.1007/s00603-010-0091-8.

    Article  Google Scholar 

  34. XIA Kai-wen, YAO Wei, WU Bang-biao. Dynamic rock tensile strengths of Laurentian granite: Experimental observation and micromechanical model [J]. Journal of Rock Mechanics & Geotechnical, 2017, 9(1): 116–124. DOI: https://doi.org/10.1016/j.jrmge.2016.08.007.

    Article  Google Scholar 

  35. XU Peng, YANG Ren-shu, JU Yang, XIA Kai-wen, GUO Yang. Experimental study on influences of inclined weak interface on the dynamic crack propagation behavior [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1645–1652. DOI: https://doi.org/10.11779/CJGE201909008. (in Chinese)

    Google Scholar 

  36. GRADY D, KIPP M E. Continuum modelling of explosive fracture in oil shale [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1980, 17(3): 147–157. DOI: https://doi.org/10.1016/0148-9062(80)91361-3.

    Article  Google Scholar 

  37. NICK B. Non-linear shear strength for rock, rock joints, rockfill and interfaces [J] Innovative Infrastructure Solutions, 2016, 30: 2370. DOI: https://doi.org/10.1007/s41062-016-0011-1.

    Google Scholar 

  38. GONG Feng-qiang, LU Dao-hui, LI Xi-bing, RAO Qiu-hua. Experimental research of sandstone dynamic strength criterion under different strain rates [J]. Rock and Soil Mechanics, 2013, 34(9): 2433–2441. DOI: https://doi.org/10.16285/j.rsm.2013.9.007. (in Chinese)

    Google Scholar 

  39. LIU Xiao-hui, ZHANG Ru, LIU Jian-feng. Dynamic test study of coal rock under different strain rates [J]. Journal of China Coal Society, 2012, 37(9): 1528–1534. DOI: https://doi.org/10.1007/s11783-011-0280-z. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by GAO Ming-zhong, LI Sheng-wei and CUI Peng-fei. ZHANG Jian-guo, WANG Man and WANG Ying-wei are responsible for on-site sampling and lithology analysis. GAO Ming-zhong, CUI Peng-fei, ZHANG Jian-guo and LI Sheng-wei analyzed the calculated results. The initial draft of the manuscript was written by GAO Ming-zhong and CUI Peng-fei. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Peng-fei Cui  (崔鹏飞).

Additional information

Conflict of interest

GAO Ming-zhong, ZHANG Jian-guo, LI Sheng-wei, WANG Man, WANG Ying-wei and CUI Peng-fei declare that they have no conflict of interest.

Foundation item: Projects(51822403, 51827901) supported by the National Natural Science Foundation of China; Project(2019ZT08G315) supported by the Department of Science and Technology of Guangdong Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Mz., Zhang, Jg., Li, Sw. et al. Calculating changes in fractal dimension of surface cracks to quantify how the dynamic loading rate affects rock failure in deep mining. J. Cent. South Univ. Technol. 27, 3013–3024 (2020). https://doi.org/10.1007/s11771-020-4525-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4525-5

Key words

关键词

Navigation