Skip to main content
Log in

Acoustic emission precursors of static and dynamic instability for coarse-grained hard rock

粗晶硬岩静力与动力失稳的声发射前兆

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To investigate the acoustic emission (AE) precursors of coarse-grained hard rock instability, an experimental study on the rockburst and slabbing process of granite was carried out using a true triaxial test system. The evolution of the AE signals was monitored and analyzed in terms of the AE hit rate, fractal dimension of the AE hit number, AE count rate, b-value, dominant frequency and microcrack type. The test results show that after rock slabbing occurs, the AE precursors that can be used to predict the final dynamic instability (rockburst) are as follows: indicators such as the AE hit rate and AE count rate suddenly increase and then suddenly decrease; the AE hit rate exhibits a “quiet period”; during the “quiet period”, a small number of high-amplitude and low-frequency hits occur, and the signals corresponding to shear fracture continue to increase. The AE precursors for the final static instability (spalling) are as follows: both the AE hit rate and the b-value continuously decrease, and intermittent sudden increases appear in the high-frequency hits or the AE count rate.

摘要

为了探究粗晶硬岩失稳的声发射前兆, 采用真三轴试验系统开展花岗岩的岩爆与板裂过程的试验研究, 对试验过程中岩样声发射信号进行了监测与分析, 获得了岩爆和板裂试验的声发射信号在撞击数、撞击数分形维数、振铃计数率、b 值、主频和微破裂类型等方面的演化特征。试验结果表明, 在岩板劈裂发生后, 可用于预测岩样最终失稳模式为岩爆的声发射前兆是: 一旦AE 撞击数或振铃计数率等指标突然上升后又突然下降, 出现“平静期”, “平静期”期间出现少量高幅值低频的撞击且剪切破裂声发射信号持续增加; 可用于预测岩样最终失稳模式为板裂后折断的声发射前兆是: AE 撞击数时间分形维数、声发射b 值均呈持续下降趋势的同时, 出现高频撞击点或振铃计数率间歇性突增现象。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ORTLEPP W D, STACEY T R. Rockburst mechanisms in tunnels and shafts [J]. Tunnelling and Underground Space Technology, 1994, 9(1): 59–65. DOI: https://doi.org/10.1016/0886-7798(94)90010-8.

    Article  Google Scholar 

  2. LI Xi-bing, GONG Feng-qiang, TAO Ming, DONG Long-jun, DU Kun, MA Chun-de, ZHOU Zi-long, YIN Tu-bing. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 767–782. DOI: https://doi.org/10.1016/j.jrmge.2017.04.004.

    Article  Google Scholar 

  3. GONG Feng-qiang, SI Xue-feng, LI Xi-bing, WANG Shan-yong. Experimental investigation of strain rockburst in circular Caverns under deep three-dimensional high-stress conditions [J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1459–1474. DOI: https://doi.org/10.1007/s00603-108-1660-5.

    Article  Google Scholar 

  4. SI Xue-feng, GONG Feng-qiang. Strength-weakening effect and shear-tension failure mode transformation mechanism of rockburst for fine-grained granite under triaxial unloading compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104347. DOI: https://doi.org/10.1016/j.ijrmms.2020.104347.

    Article  Google Scholar 

  5. HE Man-chao, MIAO Jin-li, FENG Ji-li. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 286–298. DOI: https://doi.org/10.1016/j.iJrmms.2009.09.003.

    Article  Google Scholar 

  6. GONG Feng-qiang, WU Wu-xing, LI Tian-bin, SI Xue-feng. Experimental simulation and investigation of spalling failure of rectangular tunnel under different three-dimensional stress states [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 122: 104081. DOI: https://doi.org/10.1016/j.ijrmms.2019.104081.

    Article  Google Scholar 

  7. SU Guo-shao, SHI Yan-jiong, FENG Xia-ting, JIANG Jian-qing, ZHANG Jie, JIANG Quan. True-triaxial experimental study of the evolutionary features of the acoustic emissions and sounds of rockburst processes [J]. Rock Mechanics and Rock Engineering, 2018, 51(2): 375–389. DOI: https://doi.org/10.1007/s00603-017-1344-6.

    Article  Google Scholar 

  8. GONG Q M, YIN L J, WU S Y, ZHAO J, TING Y. Rock burst and slabbing failure and its influence on TBM excavation at headrace tunnels in Jinping II hydropower station [J]. Engineering Geology, 2012, 124: 98–108. DOI: https://doi.org/10.1016/j.enggeo.2011.10.007.

    Article  Google Scholar 

  9. CHEN Bing-rui, FENG Xia-ting, LI Qing-peng, LUO Ru-zhou, LI Shao-jun. Rock burst intensity classification based on the radiated energy with damage intensity at Jinping II Hydropower Station, China [J]. Rock Mechanics and Rock Engineering, 2015, 48(1): 289–303. DOI: https://doi.org/10.1007/s00603-013-0524-2.

    Article  Google Scholar 

  10. PESTMAN B J, VAN MUNSTER J G. An acoustic emission study of damage development and stress-memory effects in sandstone [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33(6): 585–593. DOI: https://doi.org/10.1016/0148-9062(96)00011-3.

    Article  Google Scholar 

  11. LI C, NORDLUND E. Experimental verification of the Kaiser effect in rocks [J]. Rock Mechanics and Rock Engineering, 1993, 26(4): 333–351. DOI: https://doi.org/10.1007/BF01027116.

    Article  Google Scholar 

  12. RUDAJEV V, VILHELM J, LOKAJíČEK T. Laboratory studies of acoustic emission prior to uniaxial compressive rock failure [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 699–704. DOI: https://doi.org/10.1016/S1365-1609(99)00126-4.

    Article  Google Scholar 

  13. CHMEL A, SHCHERBAKOV I. A comparative acoustic emission study of compression and impact fracture in granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64(6): 56–59. DOI: https://doi.org/10.1016/j.ijrmms.2013.08.025.

    Article  Google Scholar 

  14. MORADIAN Z, EINSTEIN H H, BALLIVY G. Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals [J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 785–800. DOI: https://doi.org/10.1007/s00603-015-0775-1.

    Article  Google Scholar 

  15. TRIANTIS D. Acoustic emission monitoring of marble specimens under uniaxial compression. Precursor phenomena in the near-failure phase [J]. Procedia Structural Integrity, 2018, 10: 11–17. DOI: https://doi.org/10.1016/j.prostr.2018.09.003.

    Article  Google Scholar 

  16. SELAHATTIN A, MURAT K, ABBAS T, GIANG N, HE M C. Effects of thermal damage on strain burst mechanism for brittle rocks under true-triaxial loading conditions [J]. Rock Mechanics and Rock Engineering, 2018, 51(6): 1657–1682. DOI: https://doi.org/10.1007/s00603-018-1415-3.

    Article  Google Scholar 

  17. MORADIAN Z, EINSTEIN H H, BALLIVY G. Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals [J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 785–800. DOI: https://doi.org/10.1007/s00603-015-0775-1.

    Article  Google Scholar 

  18. HE M C, MIAO J L, FENG J L. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 286–298. DOI: https://doi.org/10.1016/j.ijrmms.2009.09.003.

    Article  Google Scholar 

  19. HE M C, ZHAO F, CAI M, DU S. A novel experimental technique to simulate pillar burst in laboratory [J]. Rock Mechanics and Rock Engineering, 2015, 48(5): 1833–1848. DOI: https://doi.org/10.1007/s00603-014-0687-5.

    Article  Google Scholar 

  20. HIMURA N, SATO K, TAKAHASHI H. Fracture simulation of inhomogeneous materials and fractal characteristics of acoustic emissions and microcracks [J]. Transactions of the Japan Society of Mechanical Engineers Series A, 1994, 60(573): 1170–1175. DOI: https://doi.org/10.1299/kikaia.60.1170.

    Article  Google Scholar 

  21. KONG Xiang-guo, WANG En-yuan, HU Shao-bin, SHEN Rong-xi, LI Xue-long, ZHAN Tang-qi. Fractal characteristics and acoustic emission of coal containing methane in triaxial compression failure [J]. Journal of Applied Geophysics, 2016, 124: 139–147. DOI: https://doi.org/10.1016/j.jappgeo.2015.11.018.

    Article  Google Scholar 

  22. ZHANG Zhi-bo, WANG En-yuan, LI Nan. Fractal characteristics of acoustic emission events based on single-link cluster method during uniaxial loading of rock [J]. Chaos, Solitons & Fractals, 2017, 104: 298–306. DOI: https://doi.org/10.1016/j.chaos.2017.08.028.

    Article  Google Scholar 

  23. SU Guo-shao, FENG Xia-ting, WANG Jin-huan, JIANG Jian-qing, HU Li-hua. Experimental study of remotely triggered rockburst induced by a tunnel axial dynamic disturbance under true-triaxial conditions [J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2207–2226. DOI: https://doi.org/10.1007/s00603-017-1218-y.

    Article  Google Scholar 

  24. LUO Yong, GONG Feng-qiang, LI Xi-bing, WANG Shan-yong. Experimental simulation investigation of influence of depth on spalling characteristics in circular hard rock tunnel [J]. Journal of Central South University, 2020, 27(3): 891–910. DOI: https://doi.org/10.1007/s11771-020-4339-5.

    Article  Google Scholar 

  25. ZHANG Zhi-zhen, GAO Feng, SHANG Xiao-ji. Rock burst proneness prediction by acoustic emission test during rock deformation [J]. Journal of Central South University, 2014, 21(1): 373–380. DOI: https://doi.org/10.1007/s11771-014-1950-3.

    Article  Google Scholar 

  26. JIANG Quan, YANG Bing, YAN Fei, LIU Chang, SHI Yin-gen, LI Li-fu. New method for characterizing the shear damage of natural rock joint based on 3D engraving and 3D scanning [J]. International Journal of Geomechanics, 2020, 20(2): 06019022. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001575.

    Article  Google Scholar 

  27. SU Guo-shao, JIANG Jian-qing, ZHAI Shao-bin, ZHANG Gang-liang. Influence of tunnel axis stress on strainburst: an experimental study [J]. Rock Mechanics and Rock Engineering, 2017, 50(6): 1551–1567. DOI: https://doi.org/10.1007/s00603-017-1181-7.

    Article  Google Scholar 

  28. ALKAN H, CINAR Y, PUSCH G. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(1): 108–119. DOI: https://doi.org/10.1016/j.ijrmms.2006.05.003.

    Article  Google Scholar 

  29. GRASSBERGER P. Generalized dimensions of strange attractors [J]. Physics Letters A, 1983, 97(6): 227–230. DOI: https://doi.org/10.1016/0375-9601(83)90753-3.

    Article  MathSciNet  Google Scholar 

  30. HE Man-chao, JIA Xue-na, COLI M, LIVI E, SOUSA L. Experimental study of rockbursts in underground quarrying of Carrara marble [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 52: 1–8. DOI: https://doi.org/10.1016/j.ijrmms.2012.02.006.

    Article  Google Scholar 

  31. XIE He-ping, LIU Jian-feng, JU Yang, LI Jian-guang, XIE Ling-zhi. Fractal property of spatial distribution of acoustic emissions during the failure process of bedded rock salt [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1344–1351. DOI: https://doi.org/10.1016/j.ijrmms.2011.09.014.

    Article  Google Scholar 

  32. GUTENBERG B, RICHTER C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1944, 34(4): 185–188. DOI: https://doi.org/10.1038/156371a0.

    Article  Google Scholar 

  33. TAKAI N. Digital watermarking of JPEG images by a holographic technique [C]// Proc SPIE 4829, 2003, 4829: 216–217. DOI: https://doi.org/10.1117/12.523972.

    Article  Google Scholar 

  34. OHNO K, OHTSU M. Crack classification in concrete based on acoustic emission [J]. Construction and Building Materials, 2010, 24(12): 2339–2346. DOI: https://doi.org/10.1016/j.conbuildmat.2010.05.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SU Guo-shao wrote the manuscript. GAN Wei set-up and performed the experiments. ZHAI Shao-bin and ZHAO Guo-fu analyzed some of the experimental data.

Corresponding author

Correspondence to Guo-shao Su  (苏国韶).

Additional information

Conflict of interest

SU Guo-shao, GAN Wei, ZHAI Shao-bin and ZHAN Fu-guo declare that they have no conflict of interest.

Foundation item: Project(51869003) supported by the National Natural Science Foundation of China; Project(T3030097958) supported by the High Level Innovation Team and Outstanding Scholar Program of Universities in Guagnxi Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Gs., Gan, W., Zhai, Sb. et al. Acoustic emission precursors of static and dynamic instability for coarse-grained hard rock. J. Cent. South Univ. Technol. 27, 2883–2898 (2020). https://doi.org/10.1007/s11771-020-4516-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4516-6

Key words

关键词

Navigation