Skip to main content
Log in

Physico-mechanical performance of debris-flow deposits with particular reference to characterization and recognition of debris flow-related sediments

泥石流堆积的物理力学行为

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To characterize and recognize the debris flow-related deposits, the physico-mechanical performance of four deposits from the Dongyuege (DYG), Shawa (SW), Jiangjia Gully (JJG), and Gengdi (GD) debris flows in southwest China is investigated through laboratory analyses and tests. The four debris-flow materials can all be remolded into coherent, homogeneous cylinders with high densification and strength–porosity of 25%–36%, mean pore-throat radius of 0.46–5.89 µm, median pore-throat radius of 0.43–4.28 µm, P-wave velocity of 800–1200 m/s, modulus of elasticity of 28–103 MPa, unconfined compressive strength (UCS) of 220–760 kPa, and cohesion of 65–281 kPa. Based on the comparison in slurryability and formability among debris-flow deposits, granular flow deposits, fluvial deposits, residual lateritic clay and loess, whether a sediment can be cast into competent cylinders for physico-mechanical tests can be regarded as a diagnostic evidence of old debris-flow deposits. The discrepancy in physico-mechanical properties among the four debris-flow deposits suggests that the combination of foregoing physico-mechanical parameters can characterize assembling characteristics of debris flow-related sediments including grain size distribution, mineralogy, and accidental detritus. Four deposited sediments above can be surprisingly classified as hard soil-soft rocks according to UCS, and the hard soil-soft rock behaviors can advance the further understanding of debris flows.

摘要

为构建古泥石流堆积识别的半定量-定量标准, 本文对东月各、沙瓦、蒋家沟及耿底沟四处泥 石流堆积的物理力学行为进行了系统研究。实验发现, 四种泥石流材料都能被重塑为最大直径和最大 高度分别为100 mm 和256 mm, 具有块状构造的完整柱体。重塑柱体的孔隙度、平均孔喉半径、中 值孔喉半径和P 波波速分别为 25%∼36%、0.46∼5.89 μm、0.43∼4.28 μm 和800∼1200 m/s; 弹性模量、 无侧限抗压强度和内聚力分别为28∼103 MPa、220∼760 kPa (硬土或软岩)和65∼281 kPa。通过对比颗 粒流沉积物、冲积物、残积红粘土及黄土的成浆-成形能力发现, 沉积物能否被重塑成可进行单轴抗 压试验的柱体能被视为古泥石流堆积的判断依据。以上表征参数能够反映不同泥石流堆积在粒度组 成、细碎屑矿物成分及岩屑岩石类型等方面的差异。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SOHN Y K, RHEE C W, KIM B C. Debris flow andhyperconcentrated flood-flow deposits in an alluvial fan, Northwestern part of the Cretaceous Yongdong basin, Central Korea [J]. The Journal of Geology, 1999, 107(1): 111–132. DOI: https://doi.org/10.1016/j.geomorph.2013.03.01510.1086/314334.

    Article  Google Scholar 

  2. LIN P S, LIN J Y, HUNG J C, YANG M D. Assessing debris-flow hazard in a watershed in Taiwan [J]. Engineering Geology, 2002, 66(3, 4): 295–313. DOI: https://doi.org/10.1016/S0013-7952(02)00105-9.

    Article  Google Scholar 

  3. SOHN Y K. Coarse-grained debris-flow deposits in the Miocene fan deltas, SE Korea: A scaling analysis [J]. Sedimentary Geology, 2000, 130(1, 2): 45–64. DOI: https://doi.org/10.1016/S0037-0738(99)00099-8.

    Article  Google Scholar 

  4. IVERSON R M. The physics of debris flows [J]. Reviews of Geophysics, 1997, 35(3): 245–296. DOI: https://doi.org/10.1029/97RG00426.

    Article  Google Scholar 

  5. MORTON D M, ALVAREZ R M, RUPPERT K R, GOFORTH B. Contrasting rainfall generated debris flows from adjacent watersheds at Forest Falls, Southern California, USA [J]. Geomorphology, 2008, 96(3): 322–338. DOI: https://doi.org/10.1016/j.geomorph.2007.03.021.

    Article  Google Scholar 

  6. YANG K, XU Z M, TIAN L, WANG K, REN Z, TANG Y J, LUO J Y, GAO H Y. Significance of coarse clasts in viscous debris flows [J]. Engineering Geology, 2020, 272: 105665. DOI: https://doi.org/10.1016/j.enggeo.2020.105665.

    Article  Google Scholar 

  7. OGUCHI T, OGUCHI C T. Late quaternary rapid talus dissection and debris flow deposition on an alluvial fan in Syria [J]. Catena, 2004, 55(2): 125–140. DOI: https://doi.org/10.1016/S0341-8162(03)00112-7.

    Article  Google Scholar 

  8. NI H Y, ZHENG W M, LIU X L, GAO Y C. Fractal-statistical analysis of grain-size distributions of debris-flow deposits and its geological implications [J]. Landslides, 2011, 8(2): 253–259. DOI: https://doi.org/10.1007/s10346-010-0240-x.

    Article  Google Scholar 

  9. LI Y, ZHOU X J, SU P C, KONG Y D, LIU J J. A scaling distribution for grain composition of debris flow [J]. Geomorphology, 2013, 192: 30–42. DOI: https://doi.org/10.1016/j.geomorph.2013.03.015.

    Article  Google Scholar 

  10. D’ARCY M, RODA-BOLUDA D C, WHITTAKER A C. Glacial-interglacial climate changes recorded by debris flow fan deposits, Owens Valley, California [J]. Quaternary Science Reviews, 2017, 169: 288–311. DOI: https://doi.org/10.1016/j.quascirev.2017.06.002.

    Article  Google Scholar 

  11. WEBB R H, GRIFFITHS P G, RUDD L P. Holocene debris flows on the Colorado Plateau: The influence of clay mineralogy and chemistry [J]. Geological Society of America Bulletin, 2008, 120(7): 1010–1020. DOI: https://doi.org/10.1130/B26055.1.

    Article  Google Scholar 

  12. DETIENNE M, DELMELLE P, GUEVARA A, SAMANIEGO P, OPFERGELT S, MOTHES P A. Contrasting origin of two clay-rich debris flows at cayambe volcanic complex, Ecuador [J]. Bulletin of Volcanology, 2017, 79(4): 27. DOI: https://doi.org/10.1007/s00445-017-1111-2.

    Article  Google Scholar 

  13. de BLASIO F V, BREIEN H, ELVERHØI A. Modelling a cohesive-frictional debris flow: An experimental, theoretical, and field-based study [J]. Earth Surface Processes and Landforms, 2010, 36(6): 753–766. DOI: https://doi.org/10.1002/esp.2101.

    Article  Google Scholar 

  14. KANG H S, KIM Y T. Rheological properties of loose sands subjected to upward flow [J]. Canadian Geotechnical Journal, 2017, 54(5): 664–673. DOI: https://doi.org/10.1139/cgj-2016-0171.

    Article  Google Scholar 

  15. JOHNSON A M, RODINE J R. Debris flow [M]// Slope Instability. Chichester: Wiley, 1984: 257–361.

    Google Scholar 

  16. MAJOR J J, PIERSON T C. Debris flow rheology: Experimental analysis of fine-grained slurries [J]. Water Resources Research, 1992, 28: 841–857. DOI: https://doi.org/10.1029/91WR02834.

    Article  Google Scholar 

  17. HÜBL J, STEINWENDTNER H. Estimation of rheological properties of viscous debris flow using a belt conveyor [J]. Physics and Chemistry of the Earth, Part B: Hydrology Oceans and Atmosphere, 2000, 25(9): 751–755. DOI: https://doi.org/10.1016/S1464-1909(00)00097-6.

    Article  Google Scholar 

  18. JEONG S W, LOCAT J, LEROUEIL S, MALET J P. Rheological properties of fine-grained sediment: The roles of texture and mineralogy [J]. Canadian Geotechnical Journal, 2010, 47(10): 1085–1100. DOI: https://doi.org/10.1139/T10-012.

    Article  Google Scholar 

  19. MAY C L, GRESSWELL R E. Spatial and temporal patterns of debris-flow deposition in the Oregon Coast Range, USA [J]. Geomorphology, 2004, 57(3, 4): 135–149. DOI: https://doi.org/10.1016/S0169-555X(03)00086-2.

    Article  Google Scholar 

  20. LOPES L D C F L, BACELLAR L D A P, CASTRO P D T A. Assessment of the debris-flow susceptibility in tropical mountains using clast distribution patterns [J]. Geomorphology, 2016, 275: 16–25. DOI: https://doi.org/10.1016/j.geomorph.2016.09.026.

    Article  Google Scholar 

  21. WILFORD D J, SAKALS M E, INNES J L, SIDLE R C, BERGERUD W A. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics [J]. Landslides, 2004, 1(1): 61–66. DOI: https://doi.org/10.1007/s10346-003-0002-0.

    Article  Google Scholar 

  22. SANTANGELO N, DAUNIS-I-ESTADELLA J, DI CRESCENZO G, DI DONATO V, FAILLACE P I, MARTÍN-FERNÁNDEZ J A, ROMANO P, SANTO A, SCORPIO V. Topographic predictors of susceptibility to alluvial fan flooding, Southern Apennines [J]. Earth Surface Processes and Landforms, 2012, 37: 803–817. DOI: https://doi.org/10.1002/esp.3197.

    Article  Google Scholar 

  23. KAIN C L, RIGBY E H, MAZENGARB C. A combined morphometric, sedimentary, GIS and modelling analysis of flooding and debris flow hazard on a composite alluvial fan, Caveside, Tasmania [J]. Sedimentary Geology, 2018, 364: 286–301. DOI: https://doi.org/10.1016/j.sedgeo.2017.10.005.

    Article  Google Scholar 

  24. BREVIK E C, REID J R. Differentiating till and debris flow deposits in glacial landscapes [J]. Soil Survey Horizons, 2000, 41: 83–90. DOI: https://doi.org/10.2136/sh2000.3.0083.

    Article  Google Scholar 

  25. de SCALLY F A, OWENS I F, LOUIS J. Controls on fan depositional processes in the schist ranges of the Southern Alps, New Zealand, and implications for debris-flow hazard assessment [J]. Geomorphology, 2010, 122(1): 99–116. DOI: https://doi.org/10.1016/j.geomorph.2010.06.002.

    Article  Google Scholar 

  26. de SCALLY F A, OWENS I F. Depositional processes and particle characteristics on fans in the Southern Alps, New Zealand [J]. Geomorphology, 2005, 69(1): 46–56. DOI: https://doi.org/10.1016/j.geomorph.2004.11.021.

    Article  Google Scholar 

  27. ZHOU Z H, REN Z, WANG K, TANG Y J, TIAN L, XU Z M. Effect of excess pore pressure on the long runout of debris flows over low gradient channels: A case study of the Dongyuege debris flow in Nu River, China [J]. Geomorphology, 2018, 308: 40–53. DOI: https://doi.org/10.1016/j.geomorph.2018.01.012.

    Article  Google Scholar 

  28. TANG Y J, XU Z M, YANG T Q, ZHOU Z H, WANG K, REN Z, YANG K, TIAN L. Impacts of small woody debris on slurrying, persistence, and propagation in a low-gradient channel of the Dongyuege debris flow in Nu River, Southwest China [J]. Landslides, 2018, 15: 2279–2293. DOI: https://doi.org/10.1007/s10346-018-1036-7.

    Article  Google Scholar 

  29. LAN H X, ZHOU C H, WANG L J, ZHANG H Y, LI R H. Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China [J]. Engineering Geology, 2004, 76(1, 2): 109–128. DOI: https://doi.org/10.1016/j.enggeo.2004.06.009.

    Article  Google Scholar 

  30. GUO X J, CUI P, LI Y. Debris flow warning threshold based on antecedent rainfall: A case study in Jiangjia Ravine, Yunnan, China [J]. Journal of Mountain Science, 2013, 10(2): 305–314. DOI: https://doi.org/10.1007/s11629-013-2521-z.

    Article  Google Scholar 

  31. MARCHI L, ARATTANO M, DEGANUTTI A M. Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps) [J]. Geomorphology, 2002, 46(1, 2): 1–17. DOI: https://doi.org/10.1016/S0169-555X(01)00162-3.

    Article  Google Scholar 

  32. COUSSOT P, MEUNIER M. Recognition, classification and mechanical description of debris flows [J]. Earth-Science Reviews, 1996, 40(3, 4): 209–227. DOI: https://doi.org/10.1016/0012-8252(95)00065-8.

    Article  Google Scholar 

  33. GB/T 50123. Standard for soil test method [S]. 1999. (in Chinese)

  34. IVERSON R M, LOGAN M, LAHUSEN R G, BERTI M. The perfect debris flow? Aggregated results from 28 large-scale experiments [J]. Journal of Geophysical Research Atmospheres, 2010, 115: F03005. DOI: https://doi.org/10.1029/2009JF001514.

    Article  Google Scholar 

  35. LY/T 1243. Determination of cation exchange capacity in forest soil [S]. Beijing: The State Forestry Administration of the People’s Republic of China, 1999. (in Chinese)

  36. GB 50021. Code for investigation of geotechnical engineering [S]. Beijing: Ministry of Housing and Urban-Rural Construction of the People’s Republic of China, 2001. (in Chinese)

    Google Scholar 

  37. TERZAGHI K, PECK R B, MESRI G. Soil mechanics in engineering practice [M]. 3rd ed. New York: Wiley, 1996: 19–21.

    Google Scholar 

  38. MALET J P, LAIGLE D, REMAÎTRE A, MAQUAIRE O. Triggering conditions and mobility of debris flows associated to complex earthflows [J]. Geomorphology, 1996, 66(1–4): 215–235. DOI: https://doi.org/10.1016/j.geomorph.2004.09.014.

    Google Scholar 

  39. HOLTZ R D, KOVACS W D, SHEAHAN T C. An Introduction to Geotechnical Engineering [M]. 2nd ed. US: Pearson Education, Inc., 2011.

    Google Scholar 

  40. National Engineering Handbook, Chapter 3–Engineering classification of earth materials” [S]. Washington, DC, U.S.: Department of Agriculture–Natural Resources Conservation Service, 2012.

    Google Scholar 

  41. LU S G, YU X L, ZONG, Y T. Nano-microscale porosity and pore size distribution in aggregates of paddy soil as affected by long-term mineral and organic fertilization under ricewheat cropping system [J]. Soil and Tillage Research, 2019, 186: 191–199. DOI: https://doi.org/10.1016/j.still.2018.10.008.

    Article  Google Scholar 

  42. CUETO N, BENAVENTE D, MARTÍNEZ-MARTÍNEZ J, GARCÍA-DEL-CURA M A. Rock fabric, pore geometry and mineralogy effects on water transport in fractured dolostones [J]. Engineering geology, 2009, 107(1, 2): 1–15. DOI: https://doi.org/10.1016/j.enggeo.2009.03.009.

    Article  Google Scholar 

  43. LALA A M S, EL-SAYED N A A. Controls of pore throat radius distribution on permeability [J]. Journal of Petroleum Science and Engineering, 2017, 157: 941–950. DOI: https://doi.org/10.1016/j.petrol.2017.08.005.

    Article  Google Scholar 

  44. PHILLIPS C J. Rheological investigation of debris flow material [D]. New Zealand: University of Lincoln, 1988.

    Google Scholar 

  45. DAS B M. Advanced soil mechanics [M]. 3rd ed. New York: Taylor & Francis, 2008.

    Google Scholar 

  46. PIERSON T C, COSTA J E. A rheologic classification of subaereal sediment-water flows [M]// Debris Flows/Avalanches: Process, Recognition, and Mitigation. United States: Boulder Co., 1987: 1–12.

    Google Scholar 

  47. SCOTT K M, VALLANCE J W, PRINGLE P T. Sedimentology, behavior, and hazards of debris flows at mount rainier, Washington [J]. U S. Geological Survey Professional Paper, 1995, 1547: 1–56.

    Google Scholar 

  48. CISLAGHI A, RIGON E, LENZI M A, BISCHETTI G B. A probabilistic multidimensional approach to quantify large wood recruitment from hillslopes in mountainous-forested catchments [J]. Geomorphology, 2018, 306: 108–127. DOI: https://doi.org/10.1016/j.geomorph.2018.01.009.

    Article  Google Scholar 

  49. RODINE J D, JOHNSON A M. The ability of debris, heavily freighted with coarse clastic materials, to flow on gentle slopes [J]. Sedimentology, 1976, 23(2): 213–234. DOI: https://doi.org/10.1111/j.1365-3091.1976.tb00047.x.

    Article  Google Scholar 

  50. PIERSON T C. Dominant particle support mechanism in debris flows at MT Thomas, New Zealand, and implications for flow mobility [J]. Sedimentology, 1981, 28(1): 49–60. DOI: https://doi.org/10.1111/j.1365-3091.1981.tb01662.x.

    Article  Google Scholar 

  51. SASANIAN S, NEWSON T A. Use of mercury intrusion porosimetry for microstructural investigation of reconstituted clays at high water contents [J]. Engineering Geology, 2013, 158: 15–22. DOI: https://doi.org/10.1016/j.enggeo.2013.03.002.

    Article  Google Scholar 

  52. KAITNA R, RICKENMANN D, SCHATZMANN M. Experimental study on rheologic behaviour of debris flow material [J]. Acta Geotechnica, 2007, 2(2): 71–85. DOI: https://doi.org/10.1007/s11440-007-0026-z.

    Article  Google Scholar 

  53. CHENU C, BISSONNAIS Y L, ARROUAYS D. Organic matter influence on clay wettability and soil aggregate stability [J]. Soil Science Society of America Journal, 2000, 64(4): 1479–1486. DOI: https://doi.org/10.2136/sssaj2000.6441479x.

    Article  Google Scholar 

  54. FESTA V, FIORE A, LUISI M, MICCOLI M N, SPALLUTO L. Petrographic features influencing basic geotechnical parameters of carbonate soft rocks from Apulia (Southern Italy) [J]. Engineering geology, 2018, 233: 76–97. DOI: https://doi.org/10.1016/j.enggeo.2017.12.009.

    Article  Google Scholar 

  55. International Society for Rock Mechanics (ISRM). Suggested methods for the quantitative description of discontinuities in rock masses [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstract, 1978, 15(6): 319–368. DOI: https://doi.org/10.1016/0148-9062(78)91472-9.

    Article  Google Scholar 

  56. ASTM D2166M-16. Standard test method for unconfined compressive strength of cohesive soil [S]. United States: The American Society for Testing and Materials, 2000.

    Google Scholar 

  57. ERCOLI L, ZIMBARDO M, NOCILLA A. Rock decay phenomena and collapse processes in the “Latomiae del Paradiso” in Syracuse (Sicily) [J]. Engineering Geology, 2014, 178(23): 155–165. DOI: https://doi.org/10.1016/j.enggeo.2014.06.015.

    Article  Google Scholar 

  58. PARK D, MICHALOWSKI R L. Three-dimensional stability analysis of slopes in hard soil/soft rock with tensile strength cut-off [J]. Engineering Geology, 2017, 229: 73–84. DOI: https://doi.org/10.1016/j.enggeo.2017.09.018.

    Article  Google Scholar 

  59. MARGHERITA Z, CLAUDIO C, LAURA E, ALESSANDRA N. A risk assessment proposal for underground cavities in Hard Soils-Soft Rocks [J]. International Journal of Rock Mechanics and Mining, 2018, 103: 43–54. DOI: https://doi.org/10.1016/j.ijrmms.2018.01.024.

    Article  Google Scholar 

  60. OMAR H, AHMAD J, NAHAZANAN H, MOHAMMED T A, YUSOFF Z M. Measurement and simulation of diametrical and axial indirect tensile tests for weak rocks [J]. Measurement, 2018, 127: 299–307. DOI: https://doi.org/10.1016/j.measurement.2018.05.067.

    Article  Google Scholar 

  61. REMAÎTRE A, MALET J P, MAQUAIRE O. Geomorphology and kinematics of debris flows with high entrainment rates: A case study in the south French Alps [J]. Comptes Rendus Geosciences, 2011, 343(11): 777–794. DOI: https://doi.org/10.1016/j.crte.2011.09.007.

    Article  Google Scholar 

  62. LEGG N T, MEIGS A J, GRANT G E, KENNARD P. Debris flow initiation in proglacial gullies on Mount Rainier, Washington [J]. Geomorphology, 2014, 226: 249–260. DOI: https://doi.org/10.1016/j.geomorph.2014.08.003.

    Article  Google Scholar 

  63. GODT J W, COE J A. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado [J]. Geomorphology, 2007, 84(1, 2): 80–97. DOI: https://doi.org/10.1016/j.geomorph.2006.07.009.

    Article  Google Scholar 

  64. CHIARLE M, IANNOTTI S, MORTARA G, DELINE P. Recent debris flow occurrences associated with glaciers in the Alps [J]. Global and Planetary Change, 2007, 56(1): 123–136. DOI: https://doi.org/10.1016/j.gloplacha.2006.07.003.

    Article  Google Scholar 

  65. GUTHRIE R, HOCKIN A, COLQUHOUN L, NAGY T, EVANS S G, AYLES C. An examination of controls on debris flow mobility: Evidence from coastal British Columbia [J]. Geomorphology, 2010, 114(4): 601–613. DOI: https://doi.org/10.1016/j.geomorph.2009.09.021.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-min Xu  (徐则民).

Additional information

Foundation item

Project(41931294) supported by the National Natural Science Foundation of China; Projects(U1502232, U1033601) supported by the National Natural Science Foundation of China-Yunnan Joint Fund

Contributors

YANG Kui carried out data curation, data processing and wrote the the first draft of the manuscript. XU Ze-min designed the project, performed data analysis, and contributed to the paper writing. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

The authors declare no conf ict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Xu, Zm., Ren, Z. et al. Physico-mechanical performance of debris-flow deposits with particular reference to characterization and recognition of debris flow-related sediments. J. Cent. South Univ. 27, 2726–2744 (2020). https://doi.org/10.1007/s11771-020-4494-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4494-8

Key words

关键词

Navigation