Skip to main content
Log in

A numerical study of fracture initiation under different loads during hydraulic fracturing

不同荷载作用条件下水力裂缝起裂特性的数值模拟研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The fracture initiation behavior for hydraulic fracturing treatments highlighted the necessity of proposing fracture criteria that precisely predict the fracture initiation type and location during the hydraulic fracturing process. In the present study, a Mohr-Coulomb criterion with a tensile cut-off is incorporated into the finite element code to determine the fracture initiation type and location during the hydraulic fracturing process. This fracture criterion considers the effect of fracture inclination angle, the internal friction angle and the loading conditions on the distribution of stress field around the fracture tip. The results indicate that the internal friction angle resists the shear fracture initiation. Moreover, as the internal friction angle increases, greater external loads are required to maintain the hydraulic fracture extension. Due to the increased pressure of the injected water, the tensile fracture ultimately determines the fracture initiation type. However, the shear fracture preferentially occurs as the stress anisotropy coefficient increases. Both the maximum tensile stress and equivalent maximum shear stress decrease as the stress anisotropy coefficient increases, which indicates that the greater the stress anisotropy coefficient, the higher the external loading required to propagate a new fracture. The numerical results obtained in this paper provide theoretical supports for establishing basis on investigating of the hydraulic fracturing characteristics under different conditions.

摘要

水力裂缝的起裂特性对水力压裂工程的顺利实施至关重要, 因此, 需要提出准确预测水力裂缝起裂类型和位置的断裂准则. 在本研究中, 将带有拉伸截断的摩尔-库仑准则引入有限元程序中, 用来确定水力裂缝的起裂类型和位置. 该断裂准则考虑了裂缝倾角、 岩石内摩擦角和载荷条件对裂缝尖端应力场分布的影响. 研究结果表明, 内摩擦角能减弱剪切断裂发生的可能. 此外, 随着内摩擦角的增加, 需要更大的外部载荷来使水力裂缝扩展. 随着注水压力的增大, 拉伸裂缝类型最终决定了水力裂缝的起裂类型. 但随着应力差的增大, 则优先产生剪切裂缝类型. 最大拉应力和等效最大剪应力均随着应力差的增大而减小, 说明应力差越大, 裂缝扩展所需的外载荷越大. 本文的数值计算结果为研究不同条件下水力裂缝的起裂与扩展特性提供了理论依据.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JIANG Hu, CHEN Mian, ZHANG Guang-qing, JIN Yan, ZHAO Zheng-feng, ZHU Gai-feng. Impact of oriented perforation on hydraulic fracture initiation and propagation [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1321–1326. (in Chinese)

    Google Scholar 

  2. JIN Xiao-chun, SHAN S. Fracture propagation direction and its application in hydraulic fracturing [C]// SPE Hydraulic Fracturing Technology Conference. The Woodlands, TX: Society of Petroleum Engineers, 2013. DOI: https://doi.org/10.2118/163832-MS.

  3. WANG Di, CHEN Mian, JON Yan, TANG Peng, SUN Yi-liu, YUAN Liang, LI Qing. Experimental study of fracture initiation and propagation from a wellbore [C]// 49th US Rock Mechanics/Geomechanics Symposium. San Francisco: American Rock Mechanics Association, 2015.

    Google Scholar 

  4. WANNIARACHCHI W A M, RANJITH P G, PERERA M S A, RATHNAWEERA T D, ZHANG D C, ZHANG C. Investigation of effects of fracturing fluid on hydraulic fracturing and fracture permeability of reservoir rocks: An experimental study using water and foam fracturing [J]. Engineering Fracture Mechanics, 2018, 194: 117–135. DOI: https://doi.org/10.1016/j.engfracmech.2018.03.009.

    Article  Google Scholar 

  5. TANG Shi-bin, WANG Jia-xu, CHEN Pei-zhao. Theoretical and numerical studies of cryogenic fracturing induced by thermal shock for reservoir stimulation [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 125: 104160. DOI: https://doi.org/10.1016/j.ijrmms.2019.104160.

    Article  Google Scholar 

  6. ZHOU Zhong, Yang Hao, WANG Xiang-can, ZHANG Qi-fang. Fractured rock mass hydraulic fracturing under hydrodynamic and hydrostatic pressure joint action [J]. Journal of Central South University, 2016, 23(10): 2695–2704. DOI: https://doi.org/10.1007/s11771-016-3331-6.

    Article  Google Scholar 

  7. TANG Shi-bin, ZHANG Heng. Hydraulic fracture prediction theory based on the maximum tangential strain criterion [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 2710–2719. (in Chinese)

    Google Scholar 

  8. DONG Zhou, TANG Shi-bin, RANJITH P G, LANG Ying-xian. A theoretical model for hydraulic fracturing through a single radial perforation emanating from a borehole [J]. Engineering Fracture Mechanics, 2018. 196: 28–42. DOI: https://doi.org/10.1016/j.engfracmech.2018.04.029.

    Article  Google Scholar 

  9. TANG Shi-bin, DONG Zhou, DUAN Dong, LI Ying-chun. A theoretical model for hydraulic fracturing through two symmetric radial perforations emanating from a borehole [J]. Advances in Materials Science and Engineering, 2019, 1–21. DOI: https://doi.org/10.1155/2019/6094305.

  10. WANG Han-yi. Poro-elasto-plastic modeling of complex hydraulic fracture propagation: Simultaneous multi-fracturing and producing well interference [J]. Acta Mechanica, 2016, 227(2): 507–525. DOI: https://doi.org/10.1007/s00707-015-1455-7.

    Article  MathSciNet  Google Scholar 

  11. TUNSAKUL J, JONGPRADIST P, KONGKITKUL W, WONGLERTA, YOUWAI S. Investigation of failure behavior of continuous rock mass around cavern under high internal pressure [J]. Tunnelling and Underground Space Technology, 2013, 34: 110–123. DOI: https://doi.org/10.1016/j.tust.2012.11.004.

    Article  Google Scholar 

  12. NING You-jun, AN Xin-mei, MA Gou-wei. Footwall slope stability analysis with the numerical manifold method [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6): 964–975. DOI: https://doi.org/10.1016/j.ijrmms.2011.06.011.

    Article  Google Scholar 

  13. WANG Yun-teng, ZHOU Xiao-ping, XU Xiao. Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics [J]. Engineering Fracture Mechanics, 2016, 163: 248–273. DOI: https://doi.org/10.1016/j.engfracmech.2016.06.013.

    Article  Google Scholar 

  14. LI Quan-shu, XING Hui-lin. Numerical analysis of the material parameter effects on the initiation of hydraulic fracture in a near wellbore region [J]. Journal of Natural Gas Science and Engineereing, 2015, 27: 1597–1608. DOI: https://doi.org/10.1016/j.jngse.2015.10.023.

    Article  Google Scholar 

  15. GONCALVES da SILVA B, EINSTEIN H H. Finite Element study of fracture initiation in flaws subject to internal fluid pressure and vertical stress [J]. International Journal of Solids and Structures, 2014, 51(23): 4122–4136. DOI: https://doi.org/10.1016/j.ijsolstr.2014.08.006.

    Article  Google Scholar 

  16. BOBET A. Fracture coalescence in rock materials: Experimental observations and numerical predictions [D]. Massachusetts: Massachusetts Institute of Technology, 1997.

    Google Scholar 

  17. HUANG Sai-peng, LIU Da-meng, YAO Yan-bin, GAN Quan, CAI Yi-yong, XU Lu-lu. Natural fractures initiation and fracture type prediction in coal reservoir under different in-situ stresses during hydraulic fracturing [J]. Journal of Natural Gas Science and Engineereing, 2017, 43: 69–80. DOI: https://doi.org/10.1016/j.jngse.2017.03.022.

    Article  Google Scholar 

  18. BI J, ZHOU Xiao-ping. A novel numerical algorithm for simulation of initiation, propagation and coalescence of flaws subject to internal fluid pressure and vertical stress in the framework of general particle dynamics [J]. Rock Mechanics and Rock Engineeering, 2017, 50(7): 1833–1849. DOI: https://doi.org/10.1007/s00603-017-1204-4.

    Article  Google Scholar 

  19. ZHANG Yu-shuai, ZHANG Jin-cai. Lithology-dependent minimum horizontal stress and in-situ stress estimate [J]. Tectonophysics, 2017, 703: 1–8. DOI: https://doi.org/10.1016/j.tecto.2017.03.002.

    Article  Google Scholar 

  20. ANSYS Inc. Theory Reference [M]. ANSYS Inc, 2013.

  21. PARK C H, BOBET A. Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression [J]. Engineering Fracture Mechanics, 2010, 77(14): 2727–2748. DOI: https://doi.org/10.1016/j.engfracmech.2010.06.027.

    Article  Google Scholar 

  22. YANG Sheng-qi, JING Hong-wen. Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression [J]. International Journal of Fracture, 2010, 168(2): 227–250. DOI: https://doi.org/10.1007/s10704-010-9576-4.

    Article  Google Scholar 

  23. WONG L N Y, EINSTEIN H. Fracturing behavior of prismatic specimens containing single flaws [C]// The 41st US Symposium on Rock Mechanics (USRMS): American Rock Mechanics Association, 2006.

  24. WONG L N Y, EINSTEIN H H. Crack coalescence in molded gypsum and carrara marble: Part 1. Macroscopic observations and interpretation [J]. Rock Mechanics and Rock Engineering, 2008, 42(3): 475–511. DOI: https://doi.org/10.1007/s00603-008-0003-3.

    Article  Google Scholar 

  25. GONCALVES da SILVA B. Modeling of crack initiation, propagation and coalescence in rocks [D]. Massachusetts: Massachusetts Institute of Technology, 2009.

    Google Scholar 

  26. LI Huang-qiang, WONG L N Y. Influence of flaw inclination angle and loading condition on crack initiation and propagation [J]. International Journal of Solids and Structures, 2012, 49(18): 2482–2499. DOI: https://doi.org/10.1016/j.ijsolstr.2012.05.012.

    Article  Google Scholar 

  27. LEE H, JEON S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression [J]. International Journal of Solids and Structures, 2011, 48(6): 979–999. DOI: https://doi.org/10.1016/j.ijsolstr.2010.12.001.

    Article  Google Scholar 

  28. YEW C H, WENG Xiao-wei. Mechanics of hydraulic fracturing [M]. Houston: Gulf Professional Publishing, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TANG Shi-bin provided the concept and edited the draft of manuscript. DONG Zhuo conducted the numerical modeling and wrote the first draft of the manuscript. WANG Jia-xuand AHMAD Mahmood edited the draft of manuscript.

Corresponding author

Correspondence to Shi-bin Tang  (唐世斌).

Ethics declarations

TANG Shi-bin, DONG Zhuo, WANG Jia-xu and AHMAD Mahmood declare that they have no conflict of interest.

Additional information

Foundation item: Project(2017YFC1503102) supported by the National Key Research and Development Program; Projects(51874065, U1903112) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Sb., Dong, Z., Wang, Jx. et al. A numerical study of fracture initiation under different loads during hydraulic fracturing. J. Cent. South Univ. 27, 3875–3887 (2020). https://doi.org/10.1007/s11771-020-4470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4470-3

Key words

关键词

Navigation