Skip to main content
Log in

Barton-Bandis criterion-based system reliability analysis of rock slopes

基于Barton-Bandis 破坏准则的岩质边坡系统可靠度分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Several potential failure modes generally exist in rock slopes because of the existence of massive structural planes in rock masses. A system reliability analyses method for rock slopes with multiple failure modes based on nonlinear Barton-Bandis failure criterion is proposed. The factors of safety associated with the sliding and overturning failure modes are derived, respectively. The validity of this method is verified through a planar rock slope with an inclined slope top and tension crack. Several sensitivity analyses are adopted to study the influences of structural-plane parameters, geometric parameters, anchoring parameters and fracture morphology on the rock slopes system reliability.

摘要

由于岩体中存在大量结构面,岩质边坡普遍存在多种潜在失稳模式。本文基于非线性 Barton-Bandis 破坏准则研究了多失稳模式下的岩质边坡系统可靠度分析方法。分别给出了滑动失稳和 倾覆失稳模式下的安全系数,并以一个坡顶和张拉裂缝倾斜的岩质边坡为例,验证了方法的有效性。 通过分析,研究了结构面强度参数、坡体几何参数、锚固参数和裂隙形态等对岩质边坡系统可靠度的 影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHOI S O, CHUNG S. Stability analysis of jointed rock slopes with the Barton-Bandis constitutive model in udec [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3): 581–586. DOI: https://doi.org/10.1016/j.ijrmms.2003.12.142.

    Google Scholar 

  2. HOEK E, BRAY J W. Rock slope engineering [M]. 3rd ed. London: Institution of Mining and Metallurgy, 1981.

    Google Scholar 

  3. JIANG Qing-hui, QI Zu-fang, WEI Wei, ZHOU Chuang-bing. Stability assessment of a high rock slope by strength reduction finite element method [J]. Bulletin of Engineering Geology and the Environment, 2015, 74(4): 1153–1162. DOI: https://doi.org/10.1007/s10064-014-0698-1.

    Google Scholar 

  4. LI Bo, ZHOU Kai-feng, YE Jun, SHA Peng. Application of a probabilistic method based on neutrosophic number in rock slope stability assessment [J]. Applied Sciences, 2019, 9(11): 2309. DOI: https://doi.org/10.3390/app9112309.

    Google Scholar 

  5. LI Xue-you, FAN Zeng-bin, LU Tao, XIAO Te, ZHANG Li-ming. A resilience model for engineered slopes subject to anchor corrosion [J]. KSCE Journal of Civil Engineering, 2018, 22(3): 887–895. DOI: https://doi.org/10.1007/s12205-018-1041-3.

    Google Scholar 

  6. ZHAO Lian-heng, ZHANG Shuai-hao, HUANG Dong-liang, ZUO Shi, LI De-jian. Quantitative characterization of joint roughness based on semivariogram parameters [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 109: 1–8. DOI: https://doi.org/10.1016/j.ijrmms.2018.06.008.

    Google Scholar 

  7. SARI M. Stability analysis of cut slopes using empirical, kinematical, numerical and limit equilibrium methods: Case of old Jeddah-Mecca road (Saudi Arabia) [J]. Environmental Earth Sciences, 2019, 78(21): 621. DOI: https://doi.org/10.1007/s12665-019-8573-9.

    Google Scholar 

  8. DENG Dong-ping, ZHAO Lian-heng, LI Liang. Limit equilibrium analysis for rock slope stability using basic Hoek-Brown strength criterion [J]. Journal of Central South University, 2017, 24(9): 2154–2163. DOI: https://doi.org/10.1007/s11771-017-3624-4.

    Google Scholar 

  9. LI Xiong-wei, ZHU Jian-qun, LI Zheng-wei, YANG Xiao-li. 3D stability assessment of stepped slopes in inhomogeneous soils [J]. Journal of Central South University, 2020, 27(1): 221–230. DOI: https://doi.org/10.1007/s11771-020-4290-5.

    Google Scholar 

  10. CHENG Yan-hui, HE Dong-liang. Slope reliability analysis considering variability of shear strength parameters [J]. Geotechnical and Geological Engineering, 2020: 1–8. DOI: https://doi.org/10.1007/s10706-020-01266-w.

  11. FENG Ping, LAJTAI E Z. Probabilistic treatment of the sliding wedge with EzSlide [J]. Engineering Geology, 1998, 50(1): 153–163. DOI: https://doi.org/10.1016/s0013-7952(98)00007-6.

    Google Scholar 

  12. GRAVANIS E, PANTELIDIS L, GRIFFITHS D V. An analytical solution in probabilistic rock slope stability assessment based on random fields [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 19–24. DOI: https://doi.org/10.1016/j.ijrmms.2014.06.018.

    Google Scholar 

  13. LI Dian-qing, JIANG Shui-hua, CHEN Yi-feng, ZHOU Chuang-bin. System reliability analysis of rock slope stability involving correlated failure modes [J]. KSCE Journal of Civil Engineering, 2011, 15(8): 1349–1359. DOI: https://doi.org/10.1007/s12205-011-1250-5.

    Google Scholar 

  14. LI Dian-qing, ZHOU Chuang-bin, LU Wen-bo, JIANG Qing-hui. A system reliability approach for evaluating stability of rock wedges with correlated failure modes [J]. Computers and Geotechnics, 2009, 36(8): 1298–1307. DOI: https://doi.org/10.1016/j.compgeo.2009.05.013.

    Google Scholar 

  15. OBREGON C, MITRI H S. Probabilistic approach for open pit bench slope stability analysis-A mine case study [J]. International Journal of Mining Science and Technology, 2019, 29(4): 629–640. DOI: https://doi.org/10.1016/j.ijmst.2019.06.017.

    Google Scholar 

  16. PENG Xing, LI Dian-qing, CAO Zi-jun, GONG Wei-ping, JUANG C H. Reliability-based robust geotechnical design using Monte Carlo simulation [J]. Bulletin of Engineering Geology and the Environment, 2017, 76(3): 1–11. DOI: https://doi.org/10.1007/s10064-016-0905-3.

    Google Scholar 

  17. JIMENEZRODRIGUEZ R, SITAR N. Rock wedge stability analysis using system reliability methods [J]. Rock Mechanics and Rock Engineering, 2007, 40(4): 419–427. DOI: https://doi.org/10.1007/s00603-005-0088-x.

    Google Scholar 

  18. JIMENEZRODRIGUEZ R, SITAR N, CHACON J. System reliability approach to rock slope stability [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(6): 847–859. DOI: https://doi.org/10.1016/j.ijrmms.2005.11.011.

    Google Scholar 

  19. LOW B K. Reliability analysis of rock slopes involving correlated nonnormals [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 922–935. DOI: https://doi.org/10.1016/j.ijrmms.2007.02.008.

    Google Scholar 

  20. LI Lin, LIANG R Y, LIU Han-long. System reliability analysis for anchor-stabilised slopes considering stochastic corrosion of anchors [J]. Structure and Infrastructure Engineering, 2015, 11(10): 1294–1305. DOI: https://doi.org/10.1080/15732479.2014.963626.

    Google Scholar 

  21. JIANG Shui-hua, HUANG Jin-song, ZHOU Chuang-bing. Efficient system reliability analysis of rock slopes based on Subset simulation [J]. Computers and Geotechnics, 2017, 82: 31–42. DOI: https://doi.org/10.1016/j.compgeo.2016.09.009.

    Google Scholar 

  22. CHEN Xiao-gang, WANG Zu-yu. Rock slope stability analysis: Theory, methods and programs [M]. Beijing: China Water Power Press, 2005. (in Chinese)

    Google Scholar 

  23. NIE Zhi-hong, WANG Xiang, HUANG Dong-liang, ZHAO Lian-heng. Fourier-shape-based reconstruction of rock joint profile with realistic unevenness and waviness features [J]. Journal of Central South University, 2019, 26(11): 3103–3113. DOI: https://doi.org/10.1007/s11771-019-4239-8.

    Google Scholar 

  24. BARTON N, BANDIS S, BAKHTAR K. Strength, deformation and conductivity coupling of rock joints [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(3): 121–140. DOI: https://doi.org/10.1016/0148-9062(85)93227-9.

    Google Scholar 

  25. BANDIS S C, LUMSDEN A C, BARTON N R. Experimental studies of scale effects on the shear behaviour of rock joints [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1981, 18(1): 1–21. DOI: https://doi.org/10.1016/0148-9062(81)90262-x.

    Google Scholar 

  26. BARTON N. Review of a new shear-strength criterion for rock joints [J]. Engineering Geology, 1973, 7(4): 287–332. DOI: https://doi.org/10.1016/0013-7952(73)90013-6.

    Google Scholar 

  27. BARTON N. The shear strength of rock and rock joints [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1976, 13(9): 255–279. DOI: https://doi.org/10.1016/0148-9062(76)90003-6.

    Google Scholar 

  28. BAHAADDINI M, HAGAN P C, MITRA R, HEBBLEWHITE B K. Scale effect on the shear behaviour of rock joints based on a numerical study [J]. Engineering Geology, 2014, 181: 212–223. DOI: https://doi.org/10.1016/j.enggeo.2014.07.018.

    Google Scholar 

  29. OH J, CORDING E J, MOON T. A joint shear model incorporating small-scale and large-scale irregularities [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76: 78–87. DOI: https://doi.org/10.1016/j.ijrmms.2015.02.011.

    Google Scholar 

  30. WANG Gang, ZHANG Xue-peng, JIANG Yu-jing, WU Xue-zhen, WANG Shu-gang. Rate-dependent mechanical behavior of rough rock joints [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 83: 231–240. DOI: https://doi.org/10.1016/j.ijrmms.2015.10.013.

    Google Scholar 

  31. BASHA B, ASCE M, MOGHAL A A B. Load resistance factor design (LRFD) approach for reliability based seismic design of rock slopes against wedge failures [J]. Geotechnical Special Publication, 2013, 231: 582–591. DOI: https://doi.org/10.1061/9780784412787.061.

    Google Scholar 

  32. KVELDSVIK V, NILSEN B, EINSTEIN H H, FARROK H N. Alternative approaches for analyses of a 100000 m3 rock slide based on Barton-Bandis shear strength criterion [J]. Landslides, 2008, 5(5): 161–176. DOI: https://doi.org/10.1007/s10346-007-0096-x.

    Google Scholar 

  33. DUZGUN H S B, BHASIN R. Probabilistic stability evaluation of Oppstadhornet rock slope, Norway [J]. Rock Mechanics and Rock Engineering, 2009, 42(5): 729–749. DOI: https://doi.org/10.1007/s00603-008-0011-3.

    Google Scholar 

  34. ZHAO Lian-heng, ZUO Shi, LI Liang, LIN Yu-liang, ZHANG Ying-bin. System reliability analysis of plane slide rock slope using Barton-Bandis failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 1–11. DOI: https://doi.org/10.1016/j.ijrmms.2016.06.003.

    Google Scholar 

  35. ZHAO Lian-heng, CAO Jing-yuan, ZHANG Ying-bin, LUO Qiang. Effect of hydraulic distribution on the stability of a plane slide rock slope under the nonlinear Barton-Bandis failure criterion [J]. Geomechanics & Engineering, 2015, 8(3): 391–414. DOI: https://doi.org/10.12989/gae.2015.8.3.391.

    Google Scholar 

  36. ZHAO Lian-heng, JIAO Kang-fu, ZUO Shi, YU Cheng-hao, TANG Gao-peng. Pseudo-static stability analysis of wedges based on the nonlinear Barton-Bandis failure criterion [J]. Geomechanics and Engineering, 2020, 20(4): 287. DOI: https://doi.org/10.12989/gae.2020.20.4.287.

    Google Scholar 

  37. BARTON N R, CHOUBEY V. The shear strength of rock joints in theory and practice [J]. Rock Mechanics, 1977, 10(1): 1–54. DOI: https://doi.org/10.1007/bf01261801.

    Google Scholar 

  38. LIN Yu-liang, LI Ying-xin, ZHAO Lian-heng, YANG T. Investigation on seismic response of a three-stage soil slopesupported by anchor frame structure [J]. Journal of Central South University, 2020, 27(4): 1290–1305.

    Google Scholar 

  39. LIN Yu-liang, ZHAO Lian-heng, YANG T, YANG Guo-lin, CHENG Xiao-bin. Investigation on seismic behavior of combined retaining structurewith different rock shapes [J]. Structural Engineering and Mechanics, 2020, 73(5): 599–612. DOI: https://doi.org/10.12989/sem.2020.73.5.000.

    Google Scholar 

  40. KIM D H, GRATCHEV I, BALASUBRAMANIAM A S. Back analysis of a natural jointed rock slope based on the photogrammetry method [J]. Landslides, 2015, 12(1): 147–154. DOI: https://doi.org/10.1007/s10346-014-0528-3.

    Google Scholar 

  41. SHARMA S, RAGHUVANSHI T, ANBALAGAN R. Plane failure analysis of rock slopes [J]. Geotechnical and Geological Engineering, 1995, 13(2): 105–111. DOI: https://doi.org/10.1007/BF00421876.

    Google Scholar 

  42. ZUO Shi, ZHAO Lian-heng, DENG Dong-ping, WANG Zhi-bin, ZHAO Zhi-gang. Reliability back analysis of landslide shear strength parameters based on a general nonlinear failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 126: 104–189. DOI: https://doi.org/10.1016/j.ijrmms.2019.104189.

    Google Scholar 

  43. JOHARI A, LARI A M. System probabilistic model of rock slope stability considering correlated failure modes [J]. Computers and Geotechnics, 2017, 81: 26–38. DOI: https://doi.org/10.1016/j.compgeo.2016.07.010.

    Google Scholar 

  44. GUNTHER A, WIENHOFER J, KONIETZKY H. Automated mapping of rock slope geometry, kinematics and stability with RSS-GIS [J]. Natural Hazards, 2012, 61(1): 29–49. DOI: https://doi.org/10.1007/s11069-011-9771-2.

    Google Scholar 

  45. NICHOL S L, HUNGR O, EVANS S G. Large-scale brittle and ductile toppling of rock slopes [J]. Canadian Geotechnical Journal, 2002, 39(4): 773–788. DOI: https://doi.org/10.1139/t02-027.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-heng Zhao  (赵炼恒).

Additional information

Foundation item: Project(51978666) supported by the National Natural Science Foundation of China; Project(2018-123-040) supported by the Guizhou Provincial Department of Transportation Foundation, China; Project(2019zzts009) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, S., Hu, Cw., Zhao, Lh. et al. Barton-Bandis criterion-based system reliability analysis of rock slopes. J. Cent. South Univ. 27, 2123–2133 (2020). https://doi.org/10.1007/s11771-020-4435-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4435-6

Key words

关键词

Navigation