Skip to main content
Log in

Effect of oxalate on seed precipitation of gibbsite from sodium aluminate solution

草酸盐对铝酸钠溶液晶种分解过程氢氧化铝析出的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The precipitation performance and kinetics of gibbsite from sodium aluminate solution with different sodium oxalate concentrations as well as the corresponding influence mechanism of oxalate during the seed precipitation process were systematically investigated by physicochemical properties test, using SEM and Raman spectra. As the concentration of sodium oxalate increases, both the precipitation rate and particle size of gibbsite decrease. The presence of sodium oxalate not only increases the viscosity of sodium aluminate solution, but also promotes the transformation of Al(OH)4- to Al2O(OH)62. The overall reaction rate constant decreases and the apparent activation energy of gibbsite increases with the increasing sodium oxalate concentration, the rate controlling step of which is chemical reaction. The needle-like sodium oxalate precipitates on the gibbsite crystals and covers the active Al(OH)3 seed sites, which leads to the lower precipitation rate and the finer particle size of gibbsite during the seed precipitation process.

摘要

采用物化性能测定、扫描电镜和拉曼光谱等手段系统研究了晶种分解过程铝酸钠溶液不同草酸 钠浓度下氢氧化铝的析出行为和动力学及其影响机理。随着铝酸钠溶液浓度的增加, 氢氧化铝的析出 率和晶粒尺寸均逐渐降低。草酸钠的存在不仅增加铝酸钠溶液的黏度, 而且促进Al(OH)4向 Al2O(OH)62−的转变。随着草酸钠浓度的增加, 氢氧化铝析出的反应速率常数降低, 表观活化能增加, 为化学反应控制。针状草酸钠在氢氧化铝晶体上析出, 覆盖了活性晶种的位置, 导致晶种分解过程中 氢氧化铝分解率降低、晶粒细化。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. POWER G, LOH J, VERNON C. Organic compounds in the processing of lateritic bauxites to alumina. Part 2: Effects of organics in the Bayer process [J]. Hydrometallurgy, 2012, 127(18): 125–149. DOI: 10.1016/j.hydromet.2012.07.010.

    Article  Google Scholar 

  2. BUSETTI F, BERWICK L, MCDONALD S, HEITZ A, JOLL C A, LOH J, POWER G. Physicochemical characterization of organic matters in Bayer liquor [J]. Industrial & Engineering Chemistry Research, 2014, 53(15): 6544–6553. DOI: 10.1021/ie4028268.

    Article  Google Scholar 

  3. WANG Meng, HU Hui-ping, LIU Jin-wei, CHEN Qi-yuan. Negative effect of dissolved organic compounds on settling behavior of synthetic monominerals in red mud [J]. Journal of Central South University, 2016, 23(7): 1591–1602. DOI: 10.1007/s11771-016-3213-y.

    Article  Google Scholar 

  4. MAHMOUDIAN M, GHAEMI A, SHAHHOSSEINI S. Removal of carbonate and oxalate pollutants in the Bayer process using thermal and chemical techniques [J]. Hydrometallurgy, 2015, 154: 137–148. DOI: 10.1016/j.hydromet.2015.03.016.

    Article  Google Scholar 

  5. POWER G, LOH J S C, WAJON J E, BUSETTI F, JOLL C. A review of the determination of organic compounds in Bayer process liquors [J]. Analytica Chimica Acta, 2011, 689(1): 8–21. DOI: 10.1016/j.aca.2011.01.040.

    Article  Google Scholar 

  6. FU W, VAUGHAN J, GILLESPIE A, AROFF N M. Mechanisms of polyacrylate modified sodium oxalate crystallization from highly alkaline solutions [J]. Crystal Growth & Design, 2016, 16(3): 1519–1530. DOI: 10.1021/acs.cgd.5b01645.

    Article  Google Scholar 

  7. TARDIO J, BHARGAVA S, EYER S. Interactions between specific organic compounds during catalytic wet oxidation of Bayer liquor [J]. Industrial & Engineering Chemistry Research, 2004, 43(4): 847–851. DOI: 10.1021/ie030539g.

    Article  Google Scholar 

  8. HIND A R, BHARGAVA S K, GROCOTT S C. The surface chemistry of Bayer process solids: A review [J]. Colloids Surface A: Physicochemical & Engineering Aspects, 1999, 146(1): 359–374. DOI: 10.1016/S0927-7757(98)00798-5.

    Article  Google Scholar 

  9. PERROTTA A J, WILLIAMS F. Hydrocalumite formation in Bayer liquor and its promotional effect on oxalate precipitation [C]// Light Metals. Warrendale, Pennsylvania: TMS, 1995: 77–87.

    Google Scholar 

  10. MOSTAFA M, AHAD G, SHAHROKH S. Removal of carbonate and oxalate pollutants in the Bayer process using thermal and chemical techniques [J]. Hydrometallurgy, 2015, 154(4): 137–148. DOI: 10.1016/j.hydromet.2015.03.016.

    Google Scholar 

  11. KÖNIGSBERGER E, ERIKSSON G, MAY P M, HEFTER G. Comprehensive model of synthetic Bayer liquors. Part 1. Overview [J]. Industrial & Engineering Chemistry Research, 2005, 44(15): 5805–5814. DOI: 10.1021/ie050024k.

    Article  Google Scholar 

  12. LOH J S C, BRODIE G M, POWER G. Wet oxidation of precipitation yield inhibitors in sodium aluminate solutions: Effects and proposed degradation mechanisms [J]. Hydrometallurgy, 2010, 104(2): 278–289. DOI: 10.1016/j.hydromet.2010.06.016.

    Article  Google Scholar 

  13. LIU Gui-hua, DONG Wen-bo, QI Tian-gui. Behavior of calcium oxalate in sodium aluminate solutions [J]. Transaction of Nonferrous Metals Society of China, 2017, 27(8): 1878–1887. DOI: 10.1016/S1003-6326(17)60212-7.

    Article  Google Scholar 

  14. ZHANG Bai-yong, PAN Xiao-lin, WANG Jiang-zhou, YU Hai-yan, TU Gan-feng. Reaction kinetics and mechanism of calcium oxide in dilute sodium aluminate solution with oxalate based on lime causticization [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(6): 1312–1322. DOI: 10.1016/S1003-6326(19)65038-7.

    Article  Google Scholar 

  15. BEKKER A V, LI T S, LIVK I. Dynamic response of a plant-scale gibbsite precipitation circuit [J]. Hydrometallurgy, 2017, 170(7): 24–33. DOI: 10.1016/j.hydromet.2016.06.002.

    Article  Google Scholar 

  16. LI Xiao-bin, YE Pu-hong, ZHOU Qiu-sheng, LIU Jing-hui, PENG Zhi-hong, LIU Gui-hua, QI Tian-gui. Intensifying gibbsite precipitation from sodium aluminate solution by adding a mixed seed [J]. Journal of Central South University, 2019, 26(2): 312–322. DOI: 10.1007/s11771-019-4003-0.

    Article  Google Scholar 

  17. SANGWAL K. On the mechanism of crystal growth from solutions [J]. Journal of Crystal Growth, 1998, 192(1, 2): 200–214. DOI: 10.1016/S0022-0248(98)00424-2.

    Article  Google Scholar 

  18. FU W, JAMES V, ALISTAIR G. Aspects of the mechanism of nucleation and intergrowth of gibbsite crystals on sodium oxalate surfaces in concentrated alkaline solutions [J]. Crystal Growth and Design, 2015, 15(1): 374–383. DOI:10.1021/cg501465v.

    Article  Google Scholar 

  19. FU W, JAMES V, ALISTAIR G. In situ AFM investigation of heterogeneous nucleation and growth of sodium oxalate on industrial gibbsite surfaces in concentrated alkaline solution [J]. Chemical Engineering Science, 2015, 126(4): 399–405. DOI: 10.1016/j.ces.2014.12.057.

    Article  Google Scholar 

  20. SANGWAL K. Growth kinetics and surface morphology of crystals grown from solutions: recent observation and their interpretations [J]. Progress in Crystal Growth and Characterization of Materials, 1998, 36(3): 163–248. DOI: 10.1016/S0960-8974(98)00009-6.

    Article  Google Scholar 

  21. MISRA C, WHITE E T. Crystallisation of Bayer aluminium trihydroxide [J]. Journal of Crystal Growth, 1971, 8(2): 172–178. DOI: 10.1016/0022-0248(71)90138-2.

    Article  Google Scholar 

  22. FARHADI F, MASOUD B B. Mechanism and estimation of Al(OH)3 crystal growth [J]. Journal of Crystal Growth, 2002, 234(4): 721–730. DIO: 10.1016/S0022-0248(01)01763-8.

    Article  Google Scholar 

  23. MISRA C. Solubility of aluminum trihydroxide (hydrargilite) in sodium hydroxide solution [J]. Chemical Engineering, 1970, 20: 619–628.

    Google Scholar 

  24. PÁL S. The structure of Al(III) in strongly alkaline aluminate solutions—A review [J]. Journal of Molecular Liquids, 2009, 146: 1–14. DIO: 10.1016/j.molliq.2009.01.015.

    Article  Google Scholar 

  25. SUN Qiang. The Raman OH stretching bands of liquid water [J]. Vibrational Spectroscopy, 2009, 51: 213–217. DOI: 10.1016/j.vibspec.2009.05.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-lin Pan PhD  (潘晓林).

Additional information

Foundation item: Projects (51774079, 51674075) supported by the National Natural Science Foundation of China; Project (N182508026) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Hy., Zhang, By., Pan, Xl. et al. Effect of oxalate on seed precipitation of gibbsite from sodium aluminate solution. J. Cent. South Univ. 27, 772–779 (2020). https://doi.org/10.1007/s11771-020-4330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4330-1

Key words

关键词

Navigation