Skip to main content
Log in

Multi-component opportunistic maintenance optimization for wind turbines with consideration of seasonal factor

考虑季节因素的风力机多部件机会维修优化

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Aiming at wind turbines, the opportunistic maintenance optimization is carried out for multi-component system, where minimal repair, imperfect repair, replacement as well as their effects on component’s effective age are considered. At each inspection point, appropriate maintenance mode is selected according to the component’s effective age and its maintenance threshold. To utilize the maintenance opportunities for the components among the wind turbines, opportunistic maintenance approach is adopted. Meanwhile, the influence of seasonal factor on the component’s failure rate and improvement factor’s decrease with the increase of repair’s times are also taken into account. The maintenance threshold is set as the decision variable, and an opportunistic maintenance optimization model is proposed to minimize wind turbine’s life-cycle maintenance cost. Moreover, genetic algorithm is adopted to solve the model, and the effectiveness is verified with a case study. The results show that based on the component’s inherent reliability and maintainability, the proposed model can provide optimal maintenance plans accordingly. Furthermore, the higher the component’s reliability and maintainability are, the less the times of repair and replacement will be.

摘要

以风力机为对象,考虑最小维修、不完全维修、更换等维修行为对部件有效年龄的影响,研究 多部件系统机会维修优化问题。在每个检测点,根据部件的有效年龄和维修阈值选择适当的维修模式。 为把握风力机多部件的维修机遇,采用机会维修方法。同时,考虑季节因素对零部件的故障率以及改 善因子随维修次数的增加而降低的情况,将维修阈值作为决策变量,以风力机全寿命周期维修成本最 低为目标,建立风力机多部件机会维修优化模型。采用遗传算法求解模型,通过实例验证模型的有效 性。结果表明,该模型可以根据部件固有的可靠性和维修性特征,制定最优维修计划。此外,部件可 靠性越高、维修性越好,维修和更换次数越少。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SAHU B K. Wind energy developments and policies in China: A short review [J]. Renewable & Sustainable Energy Reviews, 2018, 81(1): 1343–1405. DOI: 10.1016/j.rser.2017. 05.183.

    MathSciNet  Google Scholar 

  2. MÁRQUEZ F P G, TOBIAS A M, PÉREZ J M P, PAPAELIAS M. Condition monitoring of wind turbines: Techniques and methods [J]. Renewable Energy, 2012, 46: 169–178. DOI: 10.1016/j.renene.2012.03.003.

    Article  Google Scholar 

  3. GUO Jun-feng, RUI Zhi-yuan, FENG Rui-cheng, WEI Xing-chun. Imperfect preventive maintenance for numerical control machine tools with log-linear virtual age process [J]. Journal of Central South University, 2014, 21(12): 4497–4502. DOI: 10.1007/s11771-014-2453-y.

    Article  Google Scholar 

  4. LIU Fan-mao, ZHU Hai-ping, LIU Bo-xing. Maintenance decision-making method for manufacturing system based on cost and arithmetic reduction of intensity model [J]. Journal of Central South University, 2013, 20(6): 1559–1571. DOI: 10.1007/s11771-013-1648-y.

    Article  Google Scholar 

  5. FANG You-tong, LIU Bao-you. Preventive repair policy and replacement policy of repairable system taking non-zero preventive repair time [J]. Journal of Zhejiang University-Science A, 2016, 7(2): 207–212. DOI: 10.1631/jzus.2006.AS0207.

    MathSciNet  MATH  Google Scholar 

  6. NILSSON J, BERTLING L. Maintenance management of wind power systems using condition monitoring systems life cycle cost analysis for two case studies [J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 223–229. DOI: 10.1109/PES.2007.385616.

    Article  Google Scholar 

  7. SØRENSEN J D. Framework for risk-based planning of operation and maintenance for offshore wind turbines [J]. Wind Energy, 2009, 12(5): 493–506. DOI: 10.1002/we.344.

    Article  Google Scholar 

  8. JOSHI D R, JANGAMSHETTI S H. A novel method to estimate the O&M costs for the financial planning of the wind power projects based on wind speed—A case study [J]. IEEE Transactions on Energy Conversion, 2010, 25(2): 161–167. DOI: 10.1109/TEC.2009.2032591.

    Article  Google Scholar 

  9. SINHA Y, STEEL J A. A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis [J]. Renewable & Sustainable Energy Reviews, 2015, 42: 735–742. DOI: 10.1016/j.rser.2014.10.087.

    Article  Google Scholar 

  10. SANTOS F P, TEIXEIRA A P, SOARES C G. Maintenance planning of an offshore wind turbine using stochastic Petri nets with predicates [J]. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140(2): 021904. DOI: 10.1115/1.4038934.

    Article  Google Scholar 

  11. NGUYEN T A T, CHOU S Y. Maintenance strategy selection for improving cost-effectiveness of offshore wind systems [J]. Energy Conversion and Management, 2018, 157: 86–95. DOI: 10.1016/j.enconman.2017.11.090.

    Article  Google Scholar 

  12. CUI Li-rong, LI Hai-jun. Opportunistic maintenance for multi-component shock models [J]. Mathematical Methods of Operations Research, 2006, 63(3): 493–511. DOI: 10.1007/s00186-005-0058-9.

    Article  MathSciNet  Google Scholar 

  13. SARKER B R, FAIZ T I. Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy [J]. Renewable Energy, 2016, 85: 104–113. DOI: 10.1016/j.renene.2015.06.030.

    Article  Google Scholar 

  14. ZHAO Hong-shan, ZHANG Jian-ping, CHENG Liang-liang, LI Lang. A condition based opportunistic maintenance strategy for wind turbine under imperfect maintenance [J]. Proceedings of the CSEE, 2016, 36(3): 701–708. DOI: 10.13334/j.0258-8013.pcsee.2015.15.013. (in Chinese)

    Google Scholar 

  15. LU Yang, SUN Li-ping, KANG Ji-chuan, SUN Hai. Opportunistic maintenance optimization for offshore wind turbine electrical and electronic system based on rolling horizon approach [J]. Journal of Renewable and Sustainable Energy, 2017, 9(3): 033307. DOI: 10.1063/1.4989640.

    Article  Google Scholar 

  16. DING Fang-fang, TIAN Zhi-gang. Opportunistic maintenance optimization for wind turbine systems considering imperfect maintenance action [J]. International Journal of Reliability, Quality and Safety Engineering, 2011, 18(5): 463–481. DOI: 10.1142/S0218539311004196.

    Article  Google Scholar 

  17. SU Chun, CHEN Wu. Dynamic opportunistic maintenance optimization for wind turbine system based on rolling horizon approach [J]. Journal of Mechanical Engineering, 2014, 50(14): 62–68. DOI: 10.3901/JME.2014.14.062. (in Chinese)

    Article  Google Scholar 

  18. ZHANG Chen, GAO Wei, GUO Sheng, LI You-liang, YANG Tao. Opportunistic maintenance for wind turbines considering imperfect, reliability-based maintenance [J]. Renewable Energy, 2017, 103: 606–612. DOI: 10.1016/j.renene.2016.10.072.

    Article  Google Scholar 

  19. TAVNER P J, GREENWOOD D, WHITTLE M W G, GINDELE R, FAULSTICH S, HAHN B. Study of weather and location effects on wind turbine failure rates [J]. Wind Energy, 2013, 16(2): 175–187. DOI: 10.1002/we.538.

    Article  Google Scholar 

  20. SULAEMAN S, BENIDRIS M, MITRA J, SINGH C. A wind farm reliability model considering both wind variability and turbine forced outages [J]. IEEE Transactions on Sustainable Energy, 2017, 8(2): 629–637. DOI: 10.1109/TSTE.2016.2614245.

    Article  Google Scholar 

  21. SU Chun, JIN Quan, FU Ye-qun. Correlation analysis for wind speed and failure rate of wind turbines using time series approach [J]. Journal of Renewable Sustainable Energy, 2012, 4(3): 032301. DOI: 10.1063/1.4730597.

    Article  Google Scholar 

  22. SU Chun, FU Ye-qun. Reliability assessment for wind turbines considering the influence of wind speed using Bayesian network [J]. Eksploatacja i Niezawodnosc–Maintenance and Reliability, 2014, 16(1): 1–8. DOI: 10.1016/j.biosystemseng.2013.07.002

    Google Scholar 

  23. CHEN Fan, LI Fang-xing, WEI Zhi-nong, SONG Guo-qiang, LI Jun. Reliability models of wind farms considering wind speed correlation and WTG outage [J]. Electric Power Systems Research, 2015, 119: 385–392. DOI: 10.1016/j.epsr.2014.10.016.

    Article  Google Scholar 

  24. SU Chun, HU Zhao-yong. Reliability assessment for Chinese domestic wind turbines based on data mining techniques [J]. Wind Energy, 2018, 21(3): 198–209. DOI: 10.1002/we.2155.

    Article  Google Scholar 

  25. ZHAO Yong-qiang, LIANG Gong-qian. Periodic preventive maintenance based on reliability and dynamic maintenance cost [J]. Aeronautical Manufacturing Technology, 2012(7): 89–91. DOI: 10.3969/j.issn.1671-833X.2012.07.016. (in Chinese)

    Google Scholar 

  26. ABDOLLAHZADEH H, ATASHGAR K, ABBASI M. Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups [J]. Renewable Energy, 2016, 88: 247–261. DOI: 10.1016/j.renene.2015.11.022.

    Article  Google Scholar 

  27. HOLLAND J H. Adaptation in natural and artificial systems [M]. Cambridge, MA, USA: MIT Press, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Su  (苏春).

Additional information

Foundation item: Project(71671035) supported by the National Natural Science Foundation of China; Projects(ZK15-03-01, ZK16-03-07) supported by Open Fund of Jiangsu Wind Power Engineering Technology Center of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, C., Hu, Zy. & Liu, Y. Multi-component opportunistic maintenance optimization for wind turbines with consideration of seasonal factor. J. Cent. South Univ. 27, 490–499 (2020). https://doi.org/10.1007/s11771-020-4311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4311-4

Key words

关键词

Navigation