Skip to main content
Log in

Recovery of Zn, Pb, Fe and Si from a low-grade mining ore by sulfidation roasting-beneficiation-leaching processes

采用硫化焙烧-选矿-浸出工艺高效回收低品位采矿矿石中的锌、铅、铁和硅

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To recover Zn, Pb, Fe and Si from a low-grade mining ore in the Lanping basin, Yunnan Province, China, a novel technology using the roasting with pyrite and carbon followed by beneficiation and hydrochloric acid leaching was proposed. Firstly, several factors such as pyrite dosage, roasting temperature, carbon powder dosage, holding time and particle size affecting on the flotation performance of Zn (Pb) and magnetic separation performance of Fe were simultaneously examined and the optimum process parameters were determined. A flotation concentrate, containing 17.46% Zn and 3.93% Pb, was obtained, and the Zn and Pb recoveries were 86.04% and 69.08%, respectively. The obtained flotation tailing was concentrated by a low-intensity magnetic separator. The grade of iron increased from 5.45% to 43.45% and the recovery of iron reached 64.87%. Hydrochloric acid leaching was then carried out for the magnetic separation tailing and a raw quartz concentrate containing 81.05% SiO2 was obtained. To further interpret the sulfidation mechanism of smithsonite, surface morphology and component of the sample before and after reactions were characterized by XRD and EPMA-EDS. The aim was to achieve the comprehensive utilization of the low-grade mining ore.

摘要

为了从兰坪矿区低品位采矿矿石中回收锌、铅、铁和硅等有价元素, 提出一种新的焙烧-选矿-浸出工艺, 焙烧过程中添加了黄铁矿和碳粉. 研究了黄铁矿用量、焙烧温度、碳粉用量、保温时间和颗粒粒度等因素对铅锌浮选效果和铁磁选回收行为的影响, 确定了最佳工艺参数, 得到了含锌 17.46% 和含铅 3.93% 的浮选精矿, 其中锌和铅的回收率分别为 86.04% 和 69.08%. 浮选尾矿进入弱磁选作业, 获得含铁 43.45%, 回收率为 64.87% 的铁精矿. 对弱磁选尾矿进行盐酸浸出, 获得二氧化硅含量为 81.05% 的石英砂. 采用 XRD、SEM-EDS 和 EPMA 等测试手段, 对菱锌矿反应前、后表面形貌和组成进行分析, 进一步揭示了菱锌矿的硫化机理. 本研究是为了实现低品位采矿矿石的综合利用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZAW K, PETERS S G, CROMIE P, BURRETT C, HOU Zeng-qian. Nature, diversity of deposit types and metallogenic relations of South China [J]. Ore Geology Reviews, 2007, 31(1): 3–47. DOI: https://doi.org/10.1016/j.oregeorev.2005.10.006.

    Article  Google Scholar 

  2. TANG Yong-yong, BI Xian-wu, FAYEK M, HU Rui-zhong, WU Li-yan, ZOU Zhi-chao, FENG Cai-xia, WANG Xin-song. Microscale sulfur isotopic compositions of sulfide minerals from the Jinding Zn-Pb deposit, Yunnan Province, Southwest China [J]. Gondwana Research, 2014, 26(2): 594–607. DOI: https://doi.org/10.1016/j.gr.2013.07.021. http://news.hexun.com/2015-06-10/176628271.html.

    Article  Google Scholar 

  3. China United Business Daily. Lead zinc mine in Asia: The world-class technical problem of development has been solved [EB/OL] [2015-06-10]. http://news.hexun.com/2015-06-10/176628271.html.

  4. ZHANG Jin-rang, WEN Han-jie, QIU Yu-zhuo, ZHANG Yu-xu, LI Chao. Ages of sediment-hosted Himalayan Pb—Zn—Cu—Ag polymetallic deposits in the Lanping basin, China: Re—Os geochronology of molybdenite and Sm—Nd dating of calcite [J]. Journal of Asian Earth Sciences, 2013, 73: 284–295. DOI: https://doi.org/10.1016/j.jseaes.2013.04.041.

    Article  Google Scholar 

  5. EJTEMAEI M, IRANNAJAD M, GHARABAGHI M. Influence of important factors on flotation of zinc oxide mineral using cationic, anionic and mixed (cationic/anionic) collectors [J]. Minerals Engineering, 2011, 24(13): 1402–1408. DOI: https://doi.org/10.1016/j.mineng.2011.05.018.

    Article  Google Scholar 

  6. KIERSZNICKI T, MAJEWSKI J, MZYK J. 5-alkylsalicylal-doximes as collectors in flotation of sphalerite, smithsonite and dolomite in a Hallimond tube [J]. International Journal of Mineral Processing, 1981, 7(4): 311–318. DOI: https://doi.org/10.1016/0301-7516(81)90026-0.

    Article  Google Scholar 

  7. WILLS B A, FINCH FRSC J A, PENG F. Chapter 12- Froth Flotation [M]//Wills Mineral Processing Technology, 2016: 265–380. DOI: https://doi.org/10.1016/B978-0-08-097053-0.00012-1.

    Chapter  Google Scholar 

  8. LAN Zhuo-yue, LI De-fei, LIU Quan-jun, TONG Xiong. Study on flotation of lead-zinc oxide ore from Yunnan [J]. Advanced Materials Research, 2013, 807–809: 2317–2322. DOI: https://doi.org/10.4028/www.scientific.net/AMR.807-809.2317.

    Article  Google Scholar 

  9. HOSSEINI S H, FORSSBERG E. Studies on selective flotation of smithsonite from silicate minerals using mercaptans and one stage desliming [J]. Mineral Processing & Extractive Metallurgy, 2011, 120(2): 79–84. DOI: https://doi.org/10.1179/1743285510Y.0000000001.

    Article  Google Scholar 

  10. HOSSEINI S H, FORSSBERG E. Adsorption studies of smithsonite flotation using dodecylamine and oleic acid [J]. Mining, Metallurgy & Exploration, 2006, 23(2): 87–96. DOI: https://doi.org/10.1007/BF03403341.

    Article  Google Scholar 

  11. ÖNAL G, BULUT G, GÜL A, KANGAL O, PEREK K T, ARSLAN F. Flotation of Aladag oxide lead—zinc ores [J]. Minerals Engineering, 2005, 18(2): 279–282. DOI: https://doi.org/10.1016/j.mineng.2004.10.018.

    Article  Google Scholar 

  12. WU Dan-dan, MA Wen-hui, WEN Shu-ming, BAI Shao-jun, DENG Jiu-shuai, YIN Qiong. Contribution of ammonium ions to sulfidation-flotation of smithsonite [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 20–26. DOI: https://doi.org/10.1016/j.jtice.2017.05.015.

    Article  Google Scholar 

  13. WANG Jun, LU Jin-feng, ZHANG Qi-wu, SATIO F. Mechanochemical sulfidization of nonferrous metal oxides by grinding with sulfur and iron [J]. Industrial & Engineering Chemistry Research, 2003, 42(23): 5813–5818. DOI: https://doi.org/10.1021/ie030046b.

    Article  Google Scholar 

  14. LIANG Yan-jie, CHAI Li-yuan, MIN Xiao-bo, TANG Chong-jian, ZHANG Hai-jing, KE Yong, XIE Xian-de. Hydrothermal sulfidation and floatation treatment of heavy-metal-containing sludge for recovery and stabilization [J]. Journal of Hazardous Materials, 2012, 217–218: 307–314. DOI: https://doi.org/10.1016/j.jhazmat.2012.03.025.

    Article  Google Scholar 

  15. LI Yong, WANG Ji-kun, WEI Chang, LIU Chun-xia, JIANG Ji-bo, WANG Fan. Sulfidation roasting of low grade lead—zinc oxide ore with elemental sulfur [J]. Minerals Engineering, 2010, 23(7): 563–566. DOI: https://doi.org/10.1016/j.mineng.2010.01.004.

    Article  Google Scholar 

  16. ZHENG Yong-xing, LIU Wei, QIN Wen-qing, JIAO Fen, HAN Jun-wei, YANG Kang, LUO Hong-lin. Sulfidation roasting of lead and zinc carbonate with sulphur by temperature gradient method [J]. Journal of Central South University, 2015, 22(5): 1635–1642. DOI: https://doi.org/10.1007/s11771-015-2681-9.

    Article  Google Scholar 

  17. HAN Jun-wei, LIU Wei, ZHANG Tian-fu, XUE Kai, LI Wen-hua, JIAO Fen, QIN Wen-qing. Mechanism study on the sulfidation of ZnO with sulfur and iron oxide at high temperature [J]. Scientific Reports, 2017, 7: 42536. DOI: https://doi.org/10.1038/srep42536.

    Article  Google Scholar 

  18. XUE Chun-ji, ZENG Rong, LIU Shu-wen, CHI Guo-xiang, QING Hai-ruo, CHEN Yu-chuan, YANG Jian-min, WANG Deng-hong. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn—Pb deposit, western Yunnan, South China: A review [J]. Ore Geology Reviews, 2007, 31(1): 337–359. DOI: https://doi.org/10.1016/j.oregeorev.2005.04.007.

    Article  Google Scholar 

  19. ZHENG Yong-xing, LV Jin-fang, LIU Wei, QIN Wen-qing, WEN Shu-ming. An innovative technology for recovery of zinc, lead and silver from zinc leaching residue [J]. Physicochemical Problems of Mineral Processing, 2016, 52(2): 943–954. DOI: https://doi.org/10.5277/ppmp160233.

    Google Scholar 

  20. ZHENG Yong-xing, LIU Wei, QIN Wen-qing, LUO Hong-lin, HAN Jun-wei. Mineralogical reconstruction of lead smelter slag for zinc recovery [J]. Separation Science and Technology, 2014, 49(5): 783–791. DOI: https://doi.org/10.1080/01496395.2013.863342.

    Article  Google Scholar 

  21. LV Jin-fang, ZHANG Han-ping, TONG Xiong, FAN Chun-lin, YANG Wen-tao, ZHENG Yong-xing. Innovative methodology for recovering titanium and chromium from a raw ilmenite concentrate by magnetic separation after modifying magnetic properties [J]. Journal of Hazardous Materials, 2017, 325: 251–260. DOI: https://doi.org/10.1016/jjhazmat.2016.11.075.

    Article  Google Scholar 

  22. LI Chao, SUN Heng-hui, BAI Jing, LI Long-tu. Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting [J]. Journal of Hazardous Materials, 2010, 174(1–3): 71–77. DOI: https://doi.org/10.1016/j.jhazmat.2009.09.018.

    Google Scholar 

  23. BIYOUNE M G, ATBIR A, BARI H, HASSNAOUI L, MONGACH E, KHADIR A, BOUKBIR L, BELLAJROU R, ELHADEK M. Remineralization of permeate water by calcite bed in the Daoura’s plant (south of Morocco) [J]. The European Physical Journal Special Topics, 2017, 226(5): 931–941. DOI: https://doi.org/10.1140/epjst/e2016-60181-6.

    Article  Google Scholar 

  24. GIREESH V S, VINOD V P, KRISHNAN NAIR S, NINAN G. Catalytic leaching of ilmenite using hydrochloric acid: A kinetic approach [J]. International Journal of Mineral Processing, 2015, 134: 36–40. DOI: https://doi.org/10.1016/j.minpro.2014.11.004.

    Article  Google Scholar 

  25. ZHENG Y X, LIU W, QIN W Q, HAN J W, YANG K, WANG D W. Improvement for sulphidation roasting and its application to treat lead smelter slag and zinc recovery [J]. Canadian Metallurgical Quarterly, 2015, 54(1): 92–100. DOI: https://doi.org/10.1179/1879139514Y.0000000155.

    Article  Google Scholar 

  26. HAN Jun-wei, LIU Wei, QIN Wen-qing, PENG Bing, YANG Kang, ZHENG Yong-xing. Recovery of zinc and iron from high iron-bearing zinc calcine by selective reduction roasting [J]. Journal of Industrial & Engineering Chemistry, 2015, 22(2): 272–279. DOI: https://doi.org/10.1016/j.jiec.2014.07.020.

    Google Scholar 

  27. LIU Han-qiao, WEI Guo-xia, ZHANG Rui. Removal of carbon constituents from hospital solid waste incinerator fly ash by column flotation [J]. Waste Management, 2013, 33(1): 168–174. DOI: https://doi.org/10.1016/j.wasman.2012.08.019.

    Article  Google Scholar 

  28. WANG Li, SUN Wei, ZHANG Qing-peng. Recovery of vanadium and carbon from low-grade stone coal by flotation [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(11): 3767–3773. DOI: https://doi.org/10.1016/s1003-6326(15)64020-1.

    Article  Google Scholar 

  29. KIENKO L A, VORONOVA O V. Selective flotation of fine-ingrained carbonate-fluorite ore in pulp of increased dispersion uniformity [J]. Journal of Mining Science, 2014, 50(1): 176–181. DOI: https://doi.org/10.1134/s1062739114010244.

    Article  Google Scholar 

  30. MEHDILO A, IRANNAJAD M, ZAREI H. Smithsonite flotation from zinc oxide ore using alkyl amine acetate collectors [J]. Separation Science and Technology, 2014, 49(3): 445–457. DOI: https://doi.org/10.1080/01496395.2013.838966.

    Article  Google Scholar 

  31. HUANG Jin-xiu, CHEN Meng-jun, CHEN Hai-yan, CHEN Shu, SUN Quan. Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid [J]. Waste Management, 2014, 34(2): 483–488. DOI: https://doi.org/10.1016/j.wasman.2013.10.027.

    Article  Google Scholar 

  32. ZHOU Fang, WANG Lou-xiang, XU Zheng-he, RUAN Yao-yang, ZHANG Zhen-yue, CHI Ruan. Role of reactive oily bubble in apatite flotation [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513: 11–19. DOI: https://doi.org/10.1016/j.colsurfa.2016.11.024.

    Article  Google Scholar 

  33. GUI Xia-hui, XING Yao-wen, RONG Guo-qiang, CAO Yi-jun, LIU Jiong-tian. Interaction forces between coal and kaolinite particles measured by atomic force microscopy [J]. Powder Technology, 2016, 301: 349–355. DOI: https://doi.org/10.1016/j.powtec.2016.06.026.

    Article  Google Scholar 

  34. LV Jin-fang, TONG Xiong, ZHENG Yong-xing, XIE Xian, WANG Cong-bing. Study on the surface sulfidization behavior of smithsonite at high temperature [J]. Applied Surface Science, 2018, 437: 13–18. DOI: https://doi.org/10.1016/j.apsusc.2017.12.163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-xing Zheng  (郑永兴) or Jin-fang Lv  (吕晋芳).

Additional information

Foundation item: Project(51604131) supported by the National Natural Science Foundation of China; Project(2017FB084) supported by the Yunnan Province Applied Basic Research Project, China; Project(2018T20150055) supported by the Testing and Analyzing Funds of Kunming University of Science and Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Zy., Lai, Zn., Zheng, Yx. et al. Recovery of Zn, Pb, Fe and Si from a low-grade mining ore by sulfidation roasting-beneficiation-leaching processes. J. Cent. South Univ. 27, 37–51 (2020). https://doi.org/10.1007/s11771-020-4276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4276-3

Key words

关键词

Navigation