Skip to main content
Log in

Modeling hot strip rolling process under framework of generalized additive model

基于广义可加模型框架的热轧带钢轧制过程建模

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models (GAM) to generate a practical model with generalization and precision. Specifically, the proposed modeling method includes the following steps. Firstly, the influence factors are screened using mechanism knowledge and data-mining methods. Secondly, the unary GAM without interactions including cleaning the data, building the sub-models, and verifying the sub-models. Subsequently, the interactions between the various factors are explored, and the binary GAM with interactions is constructed. The relationships among the sub-models are analyzed, and the integrated model is built. Finally, based on the proposed modeling method, two prediction models of mechanical property and deformation resistance for hot-rolled strips are established. Industrial actual data verification demonstrates that the new models have good prediction precision, and the mean absolute percentage errors of tensile strength, yield strength and deformation resistance are 2.54%, 3.34% and 6.53%, respectively. And experimental results suggest that the proposed method offers a new approach to industrial process modeling.

摘要

本研究在广义可加模型的框架下, 将工业大数据和过程机理分析相融合, 提出了一种新的建模 方法, 从而建立兼顾泛化能力和预测精度的实用模型。新的建模方法主要包括四个方面。首先, 利用 机理知识和数据挖掘方法对影响因素进行筛选。其次, 提出了一元无交互作用的广义可加模型的建模 步骤, 包括清理数据、建立子模型和验证子模型。随后, 研究了各影响因素间的交互作用, 构建了二 元有交互作用的广义可加模型。最后, 分析各子模型之间的关系, 并建立整体模型。基于本文提出的 建模方法, 建立了热轧带钢力学性能预测模型和变形抗力模型。实际工业数据验证表明新建立的模型 具有很好的预测精度, 抗拉强度、屈服强度和变形抗力的平均绝对误差分别为 2.54%、3.34%和6.53%。 实验结果表明, 本文提出的建模方法为工业过程建模提供了一种新的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIU G X, JIA L N, KONG B, FENG S B, ZHANG H R, ZHANG H. Artificial neural network application to microstructure design of Nb-Si alloy to improve ultimate tensile strength [J]. Materials Science & Engineering A, 2017, 707: 452–458.

    Article  Google Scholar 

  2. LI Quan-shan, LI Da-zi, CAO Liu-lin. Modeling and optimum operating conditions for FCCU using artificial neural network [J]. Journal of Central South University, 2015, 22(4): 1342–1349.

    Article  Google Scholar 

  3. MOHANTY I, SARKAR S, JHA B, DAS S, KUMAR R, Online mechanical property prediction system for hot rolled IF steel [J]. Ironmaking Steelmaking, 2014, 41(8): 618–627.

    Article  Google Scholar 

  4. ZHOU P, YUAN M, WANG H, CHAI T, Data-driven dynamic modeling for prediction of molten iron silicon content using elm with self-feedback [J]. Mathematical Problems in Engineering, 2015, 2015(9): 1–11.

    Google Scholar 

  5. XU Ke, AI Yong-hao, WU Xiu-yong. Application of multi-scale feature extraction to surface defect classification of hot-rolled steels [J]. International Journal of Minerals Metallurgy and Materials, 2013, 20(1): 37–41.

    Article  Google Scholar 

  6. ASADI S, SHAHRABI J, ABBASZADEH P, TABANMEHR S, A new hybrid artificial neural networks for rainfall–runoff process modeling [J]. Neurocomputing, 2013, 121(18): 470–480.

    Article  Google Scholar 

  7. XIANG Y, LIU Y, Mechanism modelling of shot peening effect on fatigue life prediction [J]. Fatigue Fract Eng Mater Struct, 2010, 33(22): 116–125.

    Article  Google Scholar 

  8. dos SANTOS A A, BARBOSA R. Model for microstructure prediction in hot strip rolled steels [J]. Steel Res Int, 2010, 81(1): 55–63.

    Article  Google Scholar 

  9. YANG Biao, SUN Jun, LI Wei, PENG Jin-hui, LI You-ling, LUO Hui-long, GUO Sheng-hui, ZHANG Zhu-ming, SU He-zhou, SHI Ya-ming. Numerical modeling dynamic process of multi-feed microwave heating of industrial solution media [J]. Journal of Central South University, 2016, 23(12): 3192–3203.

    Article  Google Scholar 

  10. GUPTA A, GOYAL S, PADMANABHAN K A, SINGH A K. Inclusions in steel: micro–macro modelling approach to analyse the effects of inclusions on the properties of steel [J]. International Journal of Advanced Manufacturing Technology, 2015, 77(1−4): 565–572.

    Article  Google Scholar 

  11. CAO Jian-guo, WANG Tian-cong, LI Hong-bo, QIAO Yu, WEN Dun, ZHOU Yun-song. High-temperature constitutive relationship of non-oriented electrical steel based on modified Arrhenius model [J]. Journal of Mechanical Engineering, 2016, 52(4): 90–96, 102. (in Chinese)

    Article  Google Scholar 

  12. SUN Yi-kang. Model and control of cold and hot rolling mill for sheets and strips [M]. Beijing: Metallurgical Industry Press, 2010. (in Chinese)

    Google Scholar 

  13. CAO Jian-guo, ZHANG Jie, ZHANG Shao-jun. Rolling equipment and automotive control [M]. Beijing: Chemistry Industrial Press, 2010. (in Chinese)

    Google Scholar 

  14. DAS S K. Neural network modelling of flow stress and mechanical properties for hot strip rolling of TRIP steel using efficient learning algorithm [J]. Ironmaking & Steelmaking, 2013, 40(4): 298–304.

    Article  Google Scholar 

  15. SUI X, LV Z, Prediction of the mechanical properties of hot rolling products by using attribute reduction ELM [J]. International Journal of Advanced Manufacturing Technology, 2016, 85(5−8): 1395–1430.

    Article  Google Scholar 

  16. LI Wei-gang, YANG Wei, ZHAO Yun-tao, HU Heng-fa. Mechanical property prediction model of hot- rolled strip via big data and metallurgical mechanism analysis [J]. Journal of Iron and Steel Research, 2018, 30(4): 301–308.

    Google Scholar 

  17. HORE S, DAS S K, BANERJEE S. An adaptive neuro-fuzzy inference system-based modelling to predict mechanical properties of hot-rolled TRIP steel [J]. Ironmaking & Steelmaking, 2016, 44(9): 1–10.

    Google Scholar 

  18. YANG Wei, LI Wei-gang, ZHAO Yun-tao, YAN BAO-kang, WANG Wen-bo. Mechanical property prediction of steel and influence factors selection based on random forests [J]. Iron & Steel, 2018, 3: 44–49. (in Chinese)

    Google Scholar 

  19. HAN J, KAMBER M, Data mining: Concepts and techniques [M]. San Francisco: Morgan Kaufmann, 2006.

    MATH  Google Scholar 

  20. HASTIE T J, TIBSHIRANI R J. Generalized additive models [J]. Stat Sci, 1986, 1: 297–310.

    Article  MathSciNet  Google Scholar 

  21. BRYK A S, RAUDENBUSH S W. Hierarchical linear models in social and behavioral research: Applications and data analysis methods [M]. Newbury Park, CA: Sage Publications, 1992.

    Google Scholar 

  22. CHATTERJEE S, HADI A S. Regression Analysis by Example [M]. 5th ed. New York: Wiley, 2012.

    MATH  Google Scholar 

  23. WU Si-wei, LIU Zhen-yu, ZHOU Xiao-guang, SHI Nai-an. Prediction of mechanical properties and process parameters selection based on big data [J]. Journal of Iron and Steel Research, 2016, 28(12): 1–4. (in Chinese)

    Article  Google Scholar 

  24. WANG Jian, WANG Xiao-fan, Yang Hai-tao, YU Chao, XIAO Hong. A new mathematical model for predicting flow stress of X70HD under hot deformation [J]. Journal of Central South University, 2015, 22(6): 2052–2059.

    Article  Google Scholar 

  25. GUPTA A K, SINGH S K, REDDY S, HARIHARAN G, Prediction of flow stress in dynamic strain aging regime of austenitic stainless steel 316 using artificial neural network [J]. Mater Des, 2012, 35(223): 589–595.

    Article  Google Scholar 

  26. LI B, NAUMAN J, Significance and development of a next-generation Level 2 model as a metallurgical system [C]// Materials Science and Technology Conference and Exhibition, MS and T'08. Pittsburgh, 2008: 1066–1077.

    Google Scholar 

  27. MAHESHWARI A K. Prediction of flow stress for hot deformation processing [J]. Computational Materials Science, 2013, 69(1): 350–358.

    Article  Google Scholar 

  28. TAO Zhi-jun, YANG He, LI Heng, MA Jun, GAO Peng-fei. Constitutive modeling of compression behavior of TC4 tube based on modified Arrhenius and artificial neural network models [J]. Rare Metals, 2016, 35(2): 162–171.

    Article  Google Scholar 

  29. SAMANTARAY D, PATEL A, BORAH U, ALBERT S K, BHADURI A K. Constitutive flow behavior of IFAC-1 austenitic stainless steel depicting strain saturation over a wide range of strain rates and temperatures [J]. Materials and Design, 2014, 56: 565–571.

    Article  Google Scholar 

  30. YU Xing-zhe, SONG Yue-qing, CUI Shun, LI Ming, LI Zeng-de. The mathematical model research of deformation resistance of V-5Cr-5Ti alloys [J]. Journal of Plasticity Engineering, 2008, 15(6): 122–124.

    Google Scholar 

  31. ZHOU Ji-hua, GUAN Ke-zhi. Plastic deformation resistance [M]. Beijing: China Machine Press, 1989. (in Chinese)

    Google Scholar 

  32. REN Yong, CHEN Xiao-ru. Mathematical model of rolling process [M]. Beijing: Metallurgical Industry Press, 2008. (in Chinese)

    Google Scholar 

  33. LIU Xiang-hua, HU Xian-lei, DU Lin-xiu. Math models of rolling parameters and its applications. [M]. Beijing: Chemistry Industrial Press, 2007. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-gang Li  (李维刚).

Additional information

Foundation item: Project(51774219) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Wg., Yang, W., Zhao, Yt. et al. Modeling hot strip rolling process under framework of generalized additive model. J. Cent. South Univ. 26, 2379–2392 (2019). https://doi.org/10.1007/s11771-019-4181-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4181-9

Key words

关键词

Navigation