Skip to main content
Log in

Experimental study on repair characteristics of damaged rock salt of underground gas storage

储气库损伤盐岩修复特征的试验研究

  • Article
  • Renewable energy and system engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Damage in rock salt has significant implication on permeability, which affects the tightness of underground salt cavern gas storage in further. During the leaching of a salt cavern, the brine with formation temperature and pressure can promote the self-healing of rock salt in the excavation damage zone (EDZ). Laboratory tests were conducted to study the promoting effect. The permeability of two intact rock salt specimens was tested. Then they were damaged into two kinds of the state respectively through uniaxial compression. After that, they were put in saturated brine (with a temperature of 50 °C and pressure of 12 MPa, which we called the repair environment in this paper) for 7 d. Finally, the permeability and mechanical properties were obtained after the damaged specimens being repaired. The results show that the permeability of intact rock salt is below 10−19 m2; the permeability increases by more than two orders because of damage; the permeability decreases significantly after being repaired, which can be comparable to its intact state. Discussions of the repair mechanisms are presented (especially the mechanism of recrystallization), which may help to provide significant guidance for the study of the tightness and stability of gas storage facilities in China.

摘要

盐岩的损伤会严重影响其渗透特性, 进一步影响储气库的密闭性。在盐穴溶腔过程中, 处于地 层温压状态下的卤水可以促进开挖扰动区内损伤盐岩的自愈合。为了研究这种促进效果, 进行了室内 试验: 首先测试了两个无损试样的渗透率, 然后利用单轴压缩对试样分别进行不同程度的损伤, 接着 将损伤试样置于处于温压状态下(温度50 °C, 压力12 MPa)的饱和卤水(文中将其定义为修复环境)中进 行修复(为期7 d), 最后对修复后的试样进行了渗透率及单轴压缩试验。结果表明: 无损盐岩渗透率小 于10−19 m2; 损伤后的盐岩渗透率增大了两个量级; 修复后的盐岩渗透率明显降低, 与无损试样渗透 率相当。文中对盐岩的修复机理进行了探讨, 尤其分析了盐岩结晶机理, 研究结果对我国储气库的稳 定性和密闭性研究有一定指导意义。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YANG Chun-he, DAEMEN J J K, YIN Jian-hua. Experimental investigation of creep behavior of salt rock [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(2): 233–242. DOI: 10.1016/S0148-9062(98) 00187-9.

    Article  Google Scholar 

  2. SCHULZE O, POPP T, KERN H. Development of damage and permeability in deforming rock salt [J]. Engineering Geology, 2001, 61(2, 3): 163–180. DOI: 10.1016/S0013-7952(01)00051-5.

    Article  Google Scholar 

  3. TSANG C F, BERNIER F, DAVIES C. Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays—In the context of radioactive waste disposal [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(1): 109–125. DOI: 10.1016/j.ijrmms.2004.08.003.

    Article  Google Scholar 

  4. MA Hong-ling, YANG Chun-he, LI Yin-ping, SHI Xi-lin, LIU Jian-feng, WANG Tong-tao. Stability evaluation of the underground gas storage in rock salts based on new partitions of the surrounding rock [J]. Environmental Earth Sciences, 2015, 73(11): 6911–6925. DOI: 10.1007/s12665-015-4019-1.

    Article  Google Scholar 

  5. SHI Xi-lin, LI Yin-ping, YANG Chun-he, XU Yu-long, MA Hong-ling, LIU Wei, JI Guo-dong. Influences of filling abandoned salt caverns with alkali wastes on surface subsidence [J]. Environmental Earth Sciences, 2015, 73(11): 6939–6950. DOI: 10.1007/s12665-015-4135-y.

    Article  Google Scholar 

  6. LIU Wei, CHEN Jie, JIANG De-yi, SHI Xi-lin, LI Yin-ping, DAEMEN J J K, YANG Chun-he. Tightness and suitability evaluation of abandoned salt caverns served as hydrocarbon energies storage under adverse geological conditions (AGC) [J]. Applied Energy, 2016, 178: 703–720. DOI: 10.1016/j.apenergy.2016.06.086.

    Article  Google Scholar 

  7. ZHANG Nan, SHI Xi-lin, WANG Tong-tao, YANG Chun-he, LIU Wei, MA Hong-ling, DAEMEN J J K. Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China [J]. Energy, 2017, 134: 504–514. DOI: 10.1016/j.energy.2017.06.073.

    Article  Google Scholar 

  8. YIN Hong-wu, MA Hong-ling, SHI Xi-lin, YANG Chun-he. A new method for permeability test on mudstone interlayer in a salt cavern gas storage [J]. Rock and Soil Mechanics, 2017, 38(8): 2241–2248. (in Chinese)

    Google Scholar 

  9. ZHANG Nan, YANG Chun-he, SHI Xi-lin, WANG Tong-tao, YIN Hong-wu, DAEMEN J J K. Analysis of mechanical and permeability properties of mudstone interlayers around a strategic petroleum reserve cavern in bedded rock salt [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 1–10. DOI: 10.1016/j.ijrmms.2018.10.014.

    Article  Google Scholar 

  10. BAUER S, BEYER C, DETHLEFSEN F, DIETRICH P, DUTTMANN R, EBERT M, FEESER V, GÖRKE U, KÖBER R, KOLDITZ O, RABBEL W, SCHANZ T, SCHÄFER D, WÜRDEMANN H, DAHMKE A. Impacts of the use of the geological subsurface for energy storage: an investigation concept [J]. Environmental Earth Sciences, 2013, 70(8): 3935–3943. DOI: 10.1007/s12665-013-2883-0.

    Article  Google Scholar 

  11. BROWN C J, POIENCOT B K, HUDYMA N, ALBRIGHT B, ESPOSITO R A. An assessment of geologic sequestration potential in the panhandle of Florida, USA [J]. Environmental Earth Sciences, 2014, 71(2): 793–806. DOI: https://doi.org/10.1007/s12665-013-2481-1.

    Article  Google Scholar 

  12. DETHLEFSEN F, EBERT M, DAHMKE A. A geological database for parameterization in numerical modeling of subsurface storage in northern Germany [J]. Environmental Earth Sciences, 2014, 71(5): 2227–2244. DOI: 10.1007/s12665-013-2627-1.

    Article  Google Scholar 

  13. YIN Hong-wu, MA Hong-ling, CHEN Xiang-sheng, SHI Xi-lin, YANG Chun-he, DUSSEAULT M B, ZHANG Yu-hao. Synthetic rock analogue for permeability studies of rock salt with mudstone [J]. Applied Sciences, 2017, 7(9): 946. DOI: 10.3390/app7090946.

    Article  Google Scholar 

  14. CHEN Jie, REN Song, YANG Chun-he, JIANG De-yi, LI Lin. Self-healing characteristics of damaged rock salt under different healing conditions [J]. Materials, 2013, 6(8): 3438–3450. DOI: 10.3390/ma6083438.

    Article  Google Scholar 

  15. CHAN K S, BODNER S R, MUNSON D E, FOSSUM A F. A constitutive model for representing coupled creep, fracture, and healing in rock salt [R]. Albuquerque, United States: Sandia National Labs, 1996.

    Google Scholar 

  16. CHAN K S, BODNER S R, MUNSON D E. Recovery and healing of damage in WIPP salt [J]. International Journal of Damage Mechanics, 1998, 7(2): 143–166. DOI: 10.1177/105678959800700204.

    Article  Google Scholar 

  17. PFEIFLE T W, HURTADO L D. Permeability of natural rock salt from the waste isolation pilot plant (WIPP) during damage evolution and healing [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(4, 5): 637–638. DOI: 10.1016/S0148-9062(98)00044-8.

    Article  Google Scholar 

  18. RATIGAN J L, NIELAND J D, DEVRIES K L. Feasibility study for lowering the minimum gas pressure in solution-mined caverns based on geomechanical analyses of creep-induced damage and healing [R]. Morgantown, United States: Federal Energy Technology Center; Pittsburgh, Unitede States: Federal Energy Technology Center, 1998.

    Google Scholar 

  19. BRODSKY N S. Thermomechanical damage recovery parameters for rocksalt from the Waste Isolation Pilot Plant [R]. Albuquerque, United States: Sandia National Labs, 1995.

    Book  Google Scholar 

  20. PEACH C J, SPIERS C J, TRIMBY P W. Effect of confining pressure on dilatation, recrystallization, and flow of rock salt at 150 °C [J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B7): 13315–13328. DOI: 10.1029/2000JB900300.

    Article  Google Scholar 

  21. HIRTH G, TULLIS J. Dislocation creep regimes in quartz aggregates [J]. Journal of Structural Geology, 1992, 14(2): 145–159. DOI: 10.1016/0191-8141(92)90053-Y.

    Article  Google Scholar 

  22. DRURY M R, URAI J L. Deformation-related recrystallization processes [J]. Tectonophysics, 1990, 172(3, 4): 235–253. DOI: 10.1016/0040-1951(90)90033-5.

    Article  Google Scholar 

  23. ter HEEGE J H, de BRESSER J H P, SPIERS C J. Dynamic recrystallization of wet synthetic polycrystalline halite: Dependence of grain size distribution on flow stress, temperature and strain [J]. Tectonophysics, 2005, 396(1, 2): 35–57. DOI: 10.1016/j.tecto.2004.10.002.

    Article  Google Scholar 

  24. SHI Xi-lin, LIU Wei, CHEN Jie, YANG Chun-he, LI Yin-ping, MA Hong-ling, PENG Hui-hua, WANG Tong-tao, MA Xu-qiang. Geological feasibility of underground oil storage in Jintan salt mine of China [J]. Advances in Materials Sicence and Engineering, 2017: 3159152. DOI: 10.1155/2017/3159152.

    Google Scholar 

  25. KAMATH J, BOYER R E, NAKAGAWA F M. Characterization of core scale heterogeneities using laboratory pressure transients [J]. SPE Formation Evaluation, 1992, 7(3): 219–227. DOI: 10.2118/20575-PA.

    Article  Google Scholar 

  26. LIU Wei, MUHAMMAD N, LI Yin-ping, SPIERS C J, YANG Chun-he, MA Hong-ling. Experimental study of permeability of salt rock and its application to deep underground gas storage [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 1953–1961. (in Chinese)

    Google Scholar 

  27. WANG Yi, LIU Shi-min, ELSWORTH D. Laboratory investigations of gas flow behaviors in tight anthracite and evaluation of different pulse-decay methods on permeability estimation [J]. International Journal of Coal Geology, 2015, 149: 118–128. DOI: 10.1016/j.coal.2015.07.009.

    Article  Google Scholar 

  28. YIN Hong-wu, YANG Chun-he, MA Hong-ling, SHI Xi-lin, CHEN Xiang-sheng, ZHANG Nan, GE Xin-bo, LIU Wei. Study on damage and repair mechanical characteristics of rock salt under uniaxial compression [J]. Rock Mechanics and Rock Engineering, 2019, 52(3): 659–671. 10.1007/s00603-018-1604-0.

    Article  Google Scholar 

  29. BRACE W F, WALSH J B, FRANGOS W T. Permeability of granite under high pressure [J]. Journal of Geophysical research, 1968, 73(6): 2225–2236. DOI: 10.1029/JB073i006p02225.

    Article  Google Scholar 

  30. WALDER J, NUR A. Permeability measurement by the pulse-decay method: Effects of poroelastic phenomena and non-linear pore pressure diffusion [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1986, 23(3): 225–232. DOI: 10.1016/0148-9062(86)90968-X.

    Article  Google Scholar 

  31. LIU Wei, LI Yin-ping, YANG Chun-he, MA Hong-ling, SHI Xi-lin, HUANG Xiao-lan. Methods for testing permeability of deep mudstone and analysis of data reliability of each method [J]. Rock and Soil Mechanics, 2014, 35(1): 85–90. (in Chinese)

    Google Scholar 

  32. HOUBEN M E, TEN HOVE A, PEACH C J, SPIERS C J. Crack healing in rocksalt via diffusion in adsorbed aqueous films: Microphysical modelling versus experiments [J]. Physics and Chemistry Earth, Parts A/B/C, 2013, 64: 95–104. DOI: 10.1016/j.pce.2012.10.001.

    Article  Google Scholar 

  33. CHAN K S, BODNER S R, MUNSON D E. Permeability of WIPP salt during damage evolution and healing [J]. International Journal of Damage Mechanics, 2001, 10(4): 347–375. DOI: 10.1106/H3UV-1URA-AFUY-FX49.

    Article  Google Scholar 

  34. CHEN D L, WEISS B, STICKLER R. A model for crack closure [J]. Engineering Fracture Mechanics, 1996, 53(4): 493–509. DOI: 10.1016/0013-7944(95)00169-7.

    Article  Google Scholar 

  35. KIM J H, LEE S B. Behavior of plasticity-induced crack closure and roughness-induced crack closure in aluminum alloy [J]. International Journal of Fatigue, 2001, 23(sup1): 247–251. DOI: 10.1016/S0142-1123(01)00155-4.

    Article  Google Scholar 

  36. BRANTLEY S L, EVANS B, HICKMAN S H, CRERAR D A. Healing of microcracks in quartz: Implications for fluid flow [J]. Geology, 1990, 18(2): 136–139. DOI: 10.1130/0091-7613(1990)018<0136:HOMIQI>2.3.CO;2.

    Article  Google Scholar 

  37. CINAR Y, PUSCH G, REITENBACH V. Petrophysical and capillary properties of compacted salt [J]. Transport in Porous Media, 2006, 64(2): 199–228. DOI: 10.1007/s11242-005-2848-1.

    Article  Google Scholar 

  38. LUX K H, EBERTH S. Fundamentals and first application of a new healing model for rock salt [C]// MANFRED W, KARL-HEINZ L, WOLFGANG M, HARDY H R J. The Mechanical Behavior of Salt–Understanding of THMC Processes in Salt. London: CRC Press, 2017: 129–138.

    Chapter  Google Scholar 

  39. SALZER K, POPP T, BÖHNEL H. Mechanical and permeability properties of highly pre-compacted granular salt bricks [C]// MANFRED W, KARL-HEINZ L, WOLFGANG M, HARDY H R J. The Mechanical Behavior of Sact-Understanding of THMC Processes in Salt. London: CRC Press, 2017: 239–248.

    Chapter  Google Scholar 

  40. URAI J L, SPIERS C J, ZWART H J, LISTER G S. Weakening of rock salt by water during long-term creep [J]. Nature, 1986, 324(6097): 554. DOI: 10.1038/324554a0.

    Article  Google Scholar 

  41. ter HEEGE J H, de BRESSER J H P, SPIERS C J. Rheological behaviour of synthetic rocksalt: The interplay between water, dynamic recrystallization and deformation mechanisms [J]. Journal of Structural Geology, 2005, 27(6): 948–963. DOI: 10.1016/j.jsg.2005.04.008.

    Article  Google Scholar 

  42. ter HEEGE J H, de BRESSER J H P, SPIERS C J. Dynamic recrystallization of wet synthetic polycrystalline halite: dependence of grain size distribution on flow stress, temperature and strain [J]. Tectonophysics, 2005, 396(1, 2): 35–57. DOI: 10.1016/j.tecto.2004.10.002.

    Article  Google Scholar 

  43. VESSELINOV M I. Crystal growth for beginners: fundamentals of nucleation, crystal growth and epitaxy [M]. Singapore: World Scientific, 2017. DOI: https://doi.org/10.1142/10127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-ran Li  (李浩然).

Additional information

Foundation item: Project(201704910741) supported by the China Scholarship Council; Projects(51874274, 51774266, 51874273, 51621006) supported by the National Natural Science Foundation of China; Project(2018YFC0808401) supported by the National Key Research and Development Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Hw., Ma, Hl., Shi, Xl. et al. Experimental study on repair characteristics of damaged rock salt of underground gas storage. J. Cent. South Univ. 26, 2185–2196 (2019). https://doi.org/10.1007/s11771-019-4165-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4165-9

Key words

关键词

Navigation