Skip to main content
Log in

Flow measurement and parameter optimization of right-angled flow passage in hydraulic manifold block

液压集成块直角转弯流道的流动测量及参数优化

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the flow field characteristics of right-angled flow passage with various cavities in the typical hydraulic manifold block. A low-speed visualization test rig was developed and the flow field of the right-angled flow passage with different cavity structures was measured using 2D-PIV technique. Numerical model was established to simulate the three-dimensional flow field. Seven eddy viscosity turbulence models were investigated in predicting the flow field by comparing against the particle image relocimetry (PIV) measurement results. By defining the weight error function K, the S-A model was selected as the appropriate turbulence model. Then, a three-factor, three-level response surface numerical test was conducted to investigate the influence of flow passage connection type, cavity diameter and cavity length-diameter ratio on pressure loss. The results show that the Box-Benhnken Design (BBD) model can predict the total pressure loss accurately. The optimal factor level appeared in flow passage connection type II, 14.64 mm diameter and 67.53% cavity length-diameter ratio. The total pressure loss decreased by 11.15% relative to the worst factor level, and total pressure loss can be reduced by 64.75% when using an arc transition right-angled flow passage, which indicates a new direction for the optimization design of flow passage in hydraulic manifold blocks.

摘要

本文研究了典型液压集成块中具有不同刀尖角容腔的直角流道的流场特征。搭建了低速可视化 试验台, 采用2D-PIV 技术测量了具有不同刀尖角容腔结构的直角流道流场。建立了全三维数值模型 并开展数值模拟研究, 通过与粒子图像测量(PIV)测量结果进行比较, 比较了七种湍流模型在流场预测 中的准确性。通过定义权重误差函数K, 筛选出S–A 模型作为合适的湍流模型。通过3 因素3 水平响 应面数值试验, 研究了流道连接类型、容腔直径和容腔长径比对压力损失的影响。结果表明, Box-Benhnken Design(BBD)模型可以准确预测总压力损失。最优模型是II 型流道连接, 直径为14.64 mm, 容腔长径比为67.53%, 总压力损失相对于最差模型可下降11.15%。如能进一步采用圆弧型直角 转弯流道, 总压力损失可降低64.75%, 这为液压集成块流道优化设计提供了新的方向。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YOO Geun-jong, CHOI Hoon-ki, KIM Chul-hwan. Characteristics of turbulent flow distribution in branch piping system [J]. Journal of Central South University, 2012, 19(11): 3208–3214. DOI: https://doi.org/10.1007/s11771-012-1397-3.

    Article  Google Scholar 

  2. GUO Kai, LI Qi, LIU Bo-tan, LIU Hui, LIU Chun-jiang. A novel design method based on flow pattern construction for flow passage with low drag and pressure drop [J]. Chemical Engineering Science, 2015, 135: 89–99.

    Article  Google Scholar 

  3. HANSPAL N S, WAGHODE B, NASSEHI V, WAKEMAN R J. Development of a predictive mathematical model for coupled stokes/Darcy flows in cross-flow membrane filtration [J]. Chemical Engineering Journal, 2009, 149: 132–142. DOI: https://doi.org/10.1016/j.cej.2008.10.012.

    Article  Google Scholar 

  4. WU D Z, JIANG X K, CHU N, WU P, WANG L Q. Numerical simulation on rotordynamic characteristics of annular seal under uniform and non-uniform flows [J]. Journal Central South University, 2017, 24: 1889–1897. DOI: https://doi.org/10.1007/s11771-017-3596-4.

    Article  Google Scholar 

  5. KAMISLI, FETHI. Second law analysis of a disturbed flow in a thin slit with wall suction and injection [J]. International Journal of Heat and Mass Transfer, 2008, 51(15, 16): 3985–4001. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.038.

    Article  MATH  Google Scholar 

  6. FARZANE N S, ELHAM O A. Numerical study on the flow distribution uniformity in angled and curved manifolds [J]. Microsystem Technologies-Micro- and Nanosystems-Information Storage and Processing Systems, 2018, 24(4): 1891–1898. DOI: https://doi.org/10.1007/s00542-017-3572-9.

    Google Scholar 

  7. MIAO Zheng-qi, XU Tong-mo. Single phase flow characteristics in the headers and connecting tube of parallel tube platen systems [J]. Applied Thermal Engineering, 2006, 26(4): 396–402. DOI: https://doi.org/10.1016/j.applthermaleng.2005.06.013.

    Article  Google Scholar 

  8. LU Li-peng, ZHONG Lu-yang, LIU Yang-wei. Turbulence models assessment for separated flows in a rectangular asymmetric three-dimensional diffuser [J]. Engineering Computations, 2016, 33(9): 978–994. DOI: https://doi.org/10.1108/EC-05-2015-0112.

    Article  Google Scholar 

  9. CHOU H T, LEI H C. Outflow uniformity along a continuous manifold [J]. Journal of Hydraulic Engineering, 2008, 134(9): 1383–1388.

    Article  Google Scholar 

  10. SAYED-HOSSEIN S, PETERS T. Adjusted friction correction factors for center-pivots with an end-gun [J]. Irrigation Science, 2103, 31(3): 351–358. DOI: https://doi.org/10.10077/S00271-011-0307-Z.

    Google Scholar 

  11. ALAZBA A A, ASCE M, MATTAR M A, EINESR M N, AMIN M T. Field Assessment of friction head loss and friction correction factor equations [J]. Journal of Irrigation and Drainage Engineering, 2012, 31(2): 166–176. DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000387.

    Article  Google Scholar 

  12. TOMOR A, KRISTOF G. Junction losses for arbitrary flow directions [J]. Journal of Fluids Engineering-Transactions of the ASME, 2017, 140(4): 041104. DOI: https://doi.org/10.1115/1.4038395.

    Article  Google Scholar 

  13. ABE O, TSUKIJI T, HARA T, YASUNAGA K. Flow analysis in pipe of a manifold block [J]. International Journal of Abrasive Technology, 2012, 6: 494–501.

    Google Scholar 

  14. WANG Jun-ye. Theory of flow distribution in manifolds [J]. Chemical Engineering Journal, 2011, 168(3): 1331–1345. DOI: https://doi.org/10.1016/j.cej.2011.02.050.

    Article  Google Scholar 

  15. MURAKAMI M, SHIMIZU Y, S HIRAGAMI H. Studies on fluid flow in three-dimensional bend conduits [J]. Bull JSME, 1969, 12: 1369–1379.

    Article  Google Scholar 

  16. IDELCHIK I E. Handbook of hydraulic resistance [M]. 2nd ed. London, UK: Hemisphere Publishing Corp., 1986.

    Google Scholar 

  17. TIWARI P, ANTAL S P, PODOWSKI M Z. Three-dimensional fluid mechanics of particulate two-phase flows in U-bend and helical conduits [J]. Physics of Fluids, 2006, 18(4): 043304. DOI: https://doi.org/10.1063/1.2189212.

    Article  Google Scholar 

  18. HU Jian-jun, KONG Xiang-dong, LI Zhi-xian, ZHANG Yong-gui, XU Jin-liang. Experimental investigation of aerodynamic interaction between tip leakage flow and spontaneous tip injection flow using 2D-PIV [J]. Experimental thermal and Fluid Science, 2014, 54: 127–135. DOI: https://doi.org/10.1016/j.expthermflusci.2014.02.014.

    Article  Google Scholar 

  19. SHOKUFAR A, KHALILI S M R, GHASSEMI A F. Analysis and optimization of smart hybrid composite plates subjected to low-velocity impact using the response surface methodology (RSM) [J]. Thin-Walled Structures, 2008, 46(11): 1204–1212. DOI: https://doi.org/10.1016/j.tws.2008.02.007.

    Article  Google Scholar 

  20. BOX G E P, WILSON K B. On the experimental attainment of optimum conditions [M]. KOTZ S, JOHNSON N L Eds. Breakthroughs in Statistics. New York: Springer-Verlag Inc., 1992: 270–310.

    Chapter  Google Scholar 

  21. YANG Peng, LIU Ying-wen, ZHONG Ge-yu. Prediction and parametric analysis of acoustic streaming in a thermo acoustic Sterling heat engine with a jet pump using response surface methodology [J]. Applied Thermal Engineering, 2016, 10: 1004–1013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-jun Hu  (胡建军).

Additional information

Foundation item: Projects(51705446, 51890881) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Jj., Chen, J., Quan, Lx. et al. Flow measurement and parameter optimization of right-angled flow passage in hydraulic manifold block. J. Cent. South Univ. 26, 852–864 (2019). https://doi.org/10.1007/s11771-019-4054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4054-2

Key words

关键词

Navigation