Skip to main content
Log in

Molecularly imprinted polymer based on upconversion nanoparticles for highly selective and sensitive determination of Ochratoxin A

上转换荧光传感检测赭曲霉毒素A的研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A novel molecularly imprinted polymer (MIP) based on upconversion nanoparticles (UCNPs) was successfully synthesized for determination of Ochratoxin A (OTA). The MIP was developed on the silica-coated UCNPs using N-(1-hydroxy-2-naphthoyl amido)-(L)-phenylalanine (HNA-Phe) as the alternative template. The final composite combined the advantages of the high selectivity of MIP with the high fluorescence intensity of UCNPs which was selective and sensitive to OTA. Under the optimal condition, the fluorescence intensity of UCNPs@SiO2@MIP decreases linearly when the concentration of OTA increases from 0.05 to 1.0 mg/L. The detection limit of OTA with the method was 0.031 mg/L. At three spiked concentration levels (50, 100 and 200 µg/kg), the recovery ranges of OTA in corn, rice and feed are 88.0%–91.6%, 80.2%–91.6% and 89.2%–90.4%, respectively.

摘要

本文基于分子印迹技术的高选择性和上转换纳米材料的荧光特性, 以赭曲霉毒素A(OTA)的结构类似物HNA-Phe为模板, 开发了一种能高选择、 高灵敏地识别痕量OTA的分子印迹聚合物 (UCNPs@SiO2@MIP)。 在最优条件下, 当OTA浓度为0.05~1.0mg/L时, 荧光印迹聚合物的荧光猝灭程度与OTA的浓度呈现良好的线性关系。 建立了 OTA 的荧光传感检测方法, 该方法的最低检出限为 0.031 mg/L。 当OTA的加标浓度为50、 100和200昭 μg/kg时, 大米、 玉米和饲料中OTA的回收范围分别为 80.2%~91.6%(RSD<4.6%)、 89.2%~90.4% (RSD<5.5%) 和 88.0%~91.6% (RSD<5.4%)。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. OZCAN Z, GUL G, YAMAN I. Ochratoxin A activates opposing c-MET/PI3K/Akt and MAPK/ERK 1–2 pathways in human proximal tubule HK-2 cells [J]. Archives of Toxicology, 2015, 89(8): 1313–1327. DOI: https://doi.org/10.1007/s00204-014-1311-x

    Article  Google Scholar 

  2. MANTLE P G. Rat kidney cancers determined by dietary Ochratoxin A in the first year of life [J]. Journal of Kidney Cancer & VHL, 2016, 3(3): 1–10. DOI: https://doi.org/10.15586/jkcvhl.2016.58

    Article  Google Scholar 

  3. XIONG Ke, WANG Xiao-ling, ZHI Hui-wei, SUN Bao-guo, LI Xiu-ting. Identification and safety evaluation of a product from biodegradation of ochratoxin a by an aspergillus strain [J]. Journal of the Science of Food & Agriculture, 2016, 97(2): 434–443. DOI: https://doi.org/10.1002/jsfa.7742

    Article  Google Scholar 

  4. WOO C S J, EL-NEZAMI H. Maternal-fetal cancer risk assessment of Ochratoxin A during pregnancy [J]. Toxins, 2016, 8(4): 1–16. DOI: https://doi.org/10.3390/toxins8040087

    Article  Google Scholar 

  5. PALUMBO J D, O’KEEFFE T L, HO Y S, SANTILLAN C J. Occurrence of Ochratoxin A contamination and detection of Ochratoxigenic aspergillus species in retail samples of dried fruits and nuts [J]. Journal of Food Protection, 2015, 78(4): 836–842. DOI: https://doi.org/10.4315/0362-028X.JFP-14-471

    Article  Google Scholar 

  6. OKUMA T A, HUYNH T P, HELLBERG R S. Use of enzyme-linked immunosorbent assay to screen for aflatoxins, Ochratoxin A, and deoxynivalenol in dry pet foods [J]. Mycotoxin Research, 2018, 34(1): 69–75. DOI: https://doi.org/10.1007/s12550-017-0300-3

    Article  Google Scholar 

  7. LAU B P Y, SCOTT P M, LEWIS D A, KANHERE S R. Quantitative determination of Ochratoxin A by liquid chromatography/electrospray tandem mass spectrometry [J]. Journal of Mass Spectrometry, 2000, 35(1): 23–32. DOI: https://doi.org/10.1002/(SICI)1096-9888(200001)35:1<23::AID-JMS903>3.0.CO;2-B

    Article  Google Scholar 

  8. WANG Pei-long, SUN Xiao-hua, SU Xiao-ou, WANG Tie. Advancements of molecularly imprinted polymers in the food safety field [J]. Analyst, 2016, 141(12): 3540–3553. DOI: https://doi.org/10.1039/c5an01993a

    Article  Google Scholar 

  9. NEZHADALI A, FEIZY J, BEHESHTI H R. A molecularly imprinted polymer for the selective extraction and determination of fenvalerate from food samples using high-performance liquid chromatography [J]. Food Analytical Methods, 2015, 8(5): 1225–1237. DOI: https://doi.org/10.1007/s12161-014-0004-7

    Article  Google Scholar 

  10. YOLA M L, GUPTA V K, ATAR N. New molecular imprinted voltammetric sensor for determination of Ochratoxin A [J]. Materials Science & Engineering C, 2016, 61: 368–375. DOI: https://doi.org/10.1016/j.msec.2015.12.057

    Article  Google Scholar 

  11. CAO Ji-liang, KONG Wei-jun, ZHOU Shu-jun, YIN Li-hui, WAN Li, YANG Mei-hua. Molecularly imprinted polymer-based solid phase clean-up for analysis of Ochratoxin A in beer, red wine, and grape juice [J]. Journal of Separation Science, 2013, 36(7): 1291–1297. DOI: https://doi.org/10.1002/jssc.201201055

    Article  Google Scholar 

  12. HONG Chao-ma, LI Hai-pu, YANG Zhao-guang, XU Qian-jin, MA Li. Preparation and property of environmental hormone 17β-estradiol molecularly imprinted polymers [J]. Journal of Central South University: Science and Techaology, 2014, 45(5): 1403–1410 (in Chinese)

    Google Scholar 

  13. ZHAN Jie, FANG Guo-zhen, YAN Zhen, PAN Ming-fei, LIU Cui-cui. Preparation of a semicovalent, molecularly surface imprinted polymer for the rapid determination of trace acid orange II in food and environmental samples [J]. Analytical & Bioanalytical Chemistry, 2013, 405(19): 6353–6363. DOI: https://doi.org/10.1007/s00216-013-7036-5

    Article  Google Scholar 

  14. YANG Yan, MENG Xiang-jun, XIAO Zheng-gang. Synthesis of a surface molecular imprinting polymer based on silica and its application in the identification of nitrocellulose [J]. Rsc Advances, 2018, 8(18): 9802–9811. DOI: https://doi.org/10.1039/c7ra13264f

    Article  Google Scholar 

  15. FANG Guo-zhen, FAN Chao, LIU Hui-lin, PAN Ming-fei, ZHU Hui-dan, WANG Shuo. A novel molecularly imprinted polymer on CdSe/ZnS quantum dots for highly selective optosensing of mycotoxin zearalenone in cereal samples [J]. Rsc Advances, 2013, 4(6): 2764–2771. DOI: https://doi.org/10.1039/c2jm33522k

    Article  Google Scholar 

  16. XU Long-hua, FANG Guo-zhen, PAN Ming-fei, WANG Xue-feng, WANG Shuo. One-pot synthesis of carbon dots-embedded molecularly imprinted polymer for specific recognition of sterigmatocystin in grains [J]. Biosens Bioelectron, 2016, 77: 950–956. DOI: https://doi.org/10.1016/j.bios.2015.10.072

    Article  Google Scholar 

  17. GUO Ting, DENG Qi-liang, FANG Guo-zhen, LIU Cui-cui, HUANG Xuan, WANG Shuo. Molecularly imprinted upconversion nanoparticles for highly selective and sensitive sensing of Cytochrome c [J]. Biosensors & Bioelectronics, 2015, 74: 498–503. DOI: https://doi.org/10.1016/j.bios.2015.06.058

    Article  Google Scholar 

  18. GNACH A, LIPINSKI T, BEDNARKIEWICZ A, RYBKA J, CAPOBIANCO J A. Upconverting nanoparticles: Assessing the toxicity [J]. Chemical Society Reviews, 2015, 44(6): 1561–1584. DOI: https://doi.org/10.1039/c4cs00177j

    Article  Google Scholar 

  19. LIU Yu-jia, LU Yi-qing, YANG Xu-san, ZHENG Xian-lin, WEN Shi-hui, WANG Fan, VIDAL X, ZHAO Jiang-bo, LIU De-ming, ZHOU Zhi-guang. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy [J]. Nature, 2017, 543(7644): 229–233. DOI: https://doi.org/10.1038/nature21366

    Article  Google Scholar 

  20. LV Jia-jia, ZHAO Sen, WU Shi-jia, WANG Zhou-ping. Upconversion nanoparticles grafted molybdenum disulfide nanosheets platform for microcystin-LR sensing [J]. Biosensors & Bioelectronics, 2017, 90(15): 203–209. DOI: https://doi.org/10.1016/j.bios.2016.09.110

    Article  Google Scholar 

  21. CHEN Guo-jun, RENATA J S, ESQUIBEL C R, LOU I, ZHENG Qi-feng, DAMMALAPATI A, HARRISON A, ELICEIRI K W, TANG Wei-ping, CHEN H. Neuroendocrine Tumor-targeted upconversion nanoparticle-based micelles for simultaneous nir-controlled combination chemotherapy and photodynamic therapy, and fluorescence imaging [J]. Advanced Functional Materials, 2017, 27(8): 1–13. DOI: https://doi.org/10.1002/adfm.201604671

    Google Scholar 

  22. WU S, BUTT H J. Near-infrared-sensitive materials based on upconverting nanoparticles [J]. Advanced Materials, 2016, 28(6): 1208–1226. DOI: https://doi.org/10.1002/adma.201502843

    Article  Google Scholar 

  23. LIU Xiao-lin, ZHANG Ning, LI Dan, LI Zhi-cheng, YOU Wei-xiong, ZHANG Qian, XIA Li-bin, YANG Bin. Fuel combustion synthesis and upconversion properties of Yb3+ and Er3+ dual-doped ZrO2 nanocrystals [J]. Journal of Central South University, 2017, 24(10): 2209–2214. DOI: https://doi.org/10.1007/s11771-017-3629-z

    Article  Google Scholar 

  24. QIAN Kun, FANG Guo-zhen, WANG Shuo. Highly sensitive and selective novel core-shell molecularly imprinted polymer based on NaYF4: Yb3+, Er3+ upconversion fluorescent nanorods [J]. Rsc Advances, 2013, 3(12): 3825–3828. DOI: https://doi.org/10.1039/c3ra23003a

    Article  Google Scholar 

  25. BAGGIANI C, BIAGIOLI F, ANFOSSI L, GIOVANNOLI C, PASSINI C, GIRAUDI G. Effect of the mimic structure on the molecular recognition properties of molecularly imprinted polymers for Ochratoxin A prepared by a fragmental approach [J]. Reactive & Functional Polymers, 2013, 73(6): 833–837. DOI: https://doi.org/10.1016/j.reactfunctpolym.2013.03.018

    Article  Google Scholar 

  26. ZHANG Fang, WAN Ying, YU Ting, ZHANG Fu-qiang, SHI Yi-feng, XIE Song-hai, LI Yi-gang, XU Lei, TU Bo, ZHAO Dong-yuan. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence [J]. Angewandte Chemie International Edition, 2007, 119(42): 7976–7979. DOI: https://doi.org/10.1002/anie.200702519

    Article  Google Scholar 

  27. MADER H S, LINK M, ACHATZ D E, UHLMANN K, LI Xiao-hua, WOLFBEIS O S. Surface-modified upconverting microparticles and nanoparticles for use in click chemistries [J]. Chemistry-A European Journal, 2010, 16(18): 5416–5424. DOI: https://doi.org/10.1002/chem.201000117

    Article  Google Scholar 

  28. LIU Hui-lin, FANG Guo-zhen, ZHU Hui-dan, LI Chang-mo, LIU Cui-cui, WANG Shuo. A novel ionic liquid stabilized molecularly imprinted optosensing material based on quantum dots and graphene oxide for specific recognition of vitamin E [J]. Biosensors & Bioelectronics, 2013, 47(10): 127–132. DOI: https://doi.org/10.1016/j.bios.2013.03.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-zhen Fang  (方国臻).

Additional information

Foundation item: Project(17ZYPTJC00050) supported by Science and Technology Committee of Tianjin, China; Project(2017YFC1600803) supported by the Ministry of Science and Technology of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Fang, Gz. Molecularly imprinted polymer based on upconversion nanoparticles for highly selective and sensitive determination of Ochratoxin A. J. Cent. South Univ. 26, 515–523 (2019). https://doi.org/10.1007/s11771-019-4023-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4023-9

Key words

关键词

Navigation