Skip to main content
Log in

Experimental investigation on deformation characteristics and permeability evolution of rock under confining pressure unloading conditions

围压卸载条件下岩石的变形特性及渗透演化的试验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release. The primary objective of this study is to explore deformation characteristics and permeability properties and provide some parameters to character the rock under unloading conditions. A series of triaxial tests with permeability and acoustic emission signal measurement were conducted under the path of confining pressure unloading prior to the peak stress. Deformation behavior and permeability evolution in the whole stress—strain process based on these experimental results were analyzed in detail. Results demonstrate that, under the confining pressure unloading conditions, a good correspondence relationship among the stress—axial strain curve, permeability—axial strain curve and acoustic emission activity pattern was obtained. After the confining pressure was unloaded, the radial strain grew much faster than the axial strain, which induced the volumetric strain growing rapidly. All failures under confining pressure unloading conditions featured brittle shear failure with a single macro shear rupture surface. With the decrease in deformation modulus during the confining pressure unloading process, the damage variable gradually increases, indicating that confining pressure unloading was a process of damage accumulation and strength degradation. From the entire loading and unloading process, there was a certain positive correlation between the permeability and volumetric strain.

摘要

在应力释放条件下岩石的变形行为及水力性质是影响岩石工程开挖及使用安全的两个主要因 素,鉴于此,本文以探寻卸荷条件下岩石的变形行为和渗透特性并提供一些表征岩石卸荷性质的参数 为研究目标。首先,进行了一组加载路径为应力峰值前卸载围压的三轴试验,在试验中进行渗透率测 试及声发射实时信号监测。然后,基于试验结果对整个应力—应变过程中岩石的变形行为及渗透演化 情况作了深入分析。结果表明:在围压卸载条件下,岩石的应力—轴向应变曲线、渗透率—轴向应变曲 线以及声发射事件分布情况具有很好的对应关系;在围压卸载之后,径向应变发展速率较轴向应变快, 从而导致体积应变也迅速增大;所有的卸围压破坏均表现为具有一个宏观破裂面的剪切破坏;随着围 压卸载过程中变形模量的不断降低,损伤变量呈不断增加趋势,表明围压卸载过程是一个累积损伤及 强度劣化的过程;从整个加载和卸载过程来看,渗透率与体积应变存在一定的正相关关系。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. COOK P. In situ pneumatic testing at yucca mountain [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1): 357–367. DOI: 10.1016/S1365-1609(99)00111-2.

    Article  Google Scholar 

  2. WANG J. High-level radioactive waste disposal in China: update 2010 [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(1): 1–11. DOI: 10.3724/SP.J.1235.2010.00001.

    MathSciNet  Google Scholar 

  3. WANG J. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(2): 99–104. DOI: 10.1016/j.jrmge.2014.01.002.

    Article  Google Scholar 

  4. JOW H. Current status of the United States spent nuclear fuel disposition research and development [J]. World Nuclear Geoscience, 2014, 31(S1): 497–498. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CPFD& dbname=CPFD0914&filename=ZGYJ201408001062&v=Mj U2NzBHNEg5WE1wNDlGWmVzSkRoTkt1aGRobmo5OF RuanFxeGRFZU1PVUtyaWZadTV2RXl2a1VML0lLVjhSU HlyU1pM.

    Google Scholar 

  5. TANG Y, YANG R, BIAN X. A review of CO2 sequestration projects and application in China [J]. The Scientific World Journal, 2014, 2014(6): ID 381854. DOI: 10.1155/2014/381854.

    Google Scholar 

  6. FANG Y, WANG C, ELSWORTH D, ISHIBASHI T. Seismicity-permeability coupling in the behavior of gas shales, CO2, storage and deep geothermal energy [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2017, 3(2):1–10. DOI: 10.1007/s40948- 017-0051-9.

    Article  Google Scholar 

  7. ZHANG Y, LU W, CHEN M, YAN P, HU P. Dam foundation excavation techniques in China: A review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(6):460–467. DOI: 10.1016/j.jrmge.2013.08.002.

    Article  Google Scholar 

  8. LI S, FENG X T, LI Z, CHEN B, ZHANG C, ZHOU H. In situ, monitoring of rockburst nucleation and evolution in the deeply buried tunnels of Jinping II hydropower station [J]. Engineering Geology, 2012, 137–138(7): 85–96. DOI: 10.1016/j.enggeo. 2012.03.010.

    Article  Google Scholar 

  9. BRACE W F, WALSH J B, FRANGOS W T. Permeability of granite under high pressure [J]. Journal of Geophysical Research, 1968, 73(6): 2225–2236. DOI: 10.1029/JB073i006p02225.

    Article  Google Scholar 

  10. WALSH J B. Effect of pore pressure and confining pressure on fracture permeability [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(5): 429–435. DOI: 10.1016/0148-9062(81)90006-1.

    Article  Google Scholar 

  11. ODA M, TAKEMURA T, AOKI T. Damage growth and permeability change in triaxial compression tests of Inada granite [J]. Mechanics of Materials, 2002, 34(6): 313–331. DOI: 10.1016/S0167-6636(02)00115-1.

    Article  Google Scholar 

  12. PATERSON M S, WONG T F. Experimental rock deformation–the brittle field [M]. Germany: Springer, 2005.

    Google Scholar 

  13. HOKKA M, BLACK J, TKALICH D, FOURMEAU M, KANE A, AOANG N H, LI C C, CHEN W W, KUOKKALA V T. Effects of strain rate and confining pressure on the compressive behavior of Kuru granite [J]. International Journal of Impact Engineering, 2016, 91: 183–193. DOI: 10.1016/j.ijimpeng.2016.01.010.

    Article  Google Scholar 

  14. HUANG R Q, WANG X N, CHAN L S. Triaxial unloading test of rocks and its implication for rock burst [J]. Bulletin of Engineering Geology and the Environment, 2001, 60(1): 37–41. DOI: 10.1007/s100640000082.

    Article  Google Scholar 

  15. HUA A Z, YOU M Q. Rock failure due to energy release during unloading and application to underground rock burst control [J]. Tunnelling and Underground Space Technology, 2001, 16(3): 241–246. DOI: 10.1016/S0886- 7798(01)00046-3.

    Article  Google Scholar 

  16. LIU Q, CHENG Y, JIN K, TU Q, ZHAO W, ZHANG R. Effect of confining pressure unloading on strength reduction of soft coal in borehole stability analysis [J]. Environmental Earth Sciences, 2017, 76(4): 173. DOI: 10.1007/s12665-017–6509–9.

    Article  Google Scholar 

  17. LIANG Y, LI Q, GU Y, ZOU Q. Mechanical and acoustic emission characteristics of rock: Effect of loading and unloading confining pressure at the postpeak stage [J]. Journal of Natural Gas Science & Engineering, 2017, 44: 54–64. DOI: 10.1016/j.jngse.2017.04.012.

    Article  Google Scholar 

  18. HUANG D, LI Y. Conversion of strain energy in triaxial unloading tests on marble [J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 66(1): 160–168. DOI: 10.1016/j.ijrmms.2013.12.001.

    Article  Google Scholar 

  19. DING Q L, JU F, MAO X B, MA D, YU B Y, SONG S B. Experimental investigation of the mechanical behavior in unloading conditions of sandstone after high-temperature treatment [J]. Rock Mechanics and Rock Engineering, 2016, 49(7): 2641–2653. DOI: 10.1007/s00603-016-0944-x.

    Article  Google Scholar 

  20. HE M C, MIAO J L, FENG J L. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(47): 286–298. DOI: 10.1016/j.ijrmms.2009.09.003.

    Article  Google Scholar 

  21. MIAO J L, JIA X N, CHENG C. The failure characteristics of granite under true triaxial unloading condition [J]. Procedia Engineering, 2011, 26(Complete): 1620–1625. DOI: 10.1016/j.proeng.2011.11.2346.

    Article  Google Scholar 

  22. RICE T L, NICHOLS R W, OLSEN H W. Low gradient permeability measurements in a triaxial system [J]. Géotechnique, 1985, 35(3): 459. DOI: 10.1680/geot. 1985.35.2.145.

    Google Scholar 

  23. HEILAND J. Permeability of triaxially compressed sandstone: influence of deformation and strain-rate on permeability [J]. Pure and Applied Geophysics, 2003, 160(5): 889–908. DOI: 10.1007/PL00012571.

    Article  Google Scholar 

  24. DAVY C A, SKOCZYLAS F, BARNICHON J D, LEBOW P. Permeability of macro-cracked argillite under confinement: Gas and water testing [J]. Physics & Chemistry of the Earth Parts A/B/C, 2007, 32(8–14): 667–680. DOI: 10.1016/j.pce.2006.02.055.

    Article  Google Scholar 

  25. FERFERA F M R, SARDA J P, BOUTÉCA M, VINCKÉ O. Experimental study of monophasic permeability changes under various stress paths [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(97): 37.e1–37.e12. DOI: 10.1016/S1365-1609(97)00087–7.

    Google Scholar 

  26. HU D W, ZHOU H, ZHANG F, SHAO J F. Evolution of poroelastic properties and permeability in damaged sandstone [J]. International Journal of Rock Mechanics and Mining Sciences. 2010, 47(6): 962–973. DOI: 10.1016/j.ijrmms.2010.06.007.

    Article  Google Scholar 

  27. YU J, LI H, CHEN X, CAI Y Y, MU K, ZHANG Y Z, WU N. Experimental study of permeability and acoustic emission characteristics of sandstone during processes of unloading confining pressure and deformation [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 69–79. http://www.rockmech.org/EN/Y2014/V33/I1/69. (in Chinese)

    Google Scholar 

  28. FAIRHURST C E, HUDSON J A. Draft ISRM suggested method for the complete stress–strain curve for the intact rock in uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 1999 36(3): 279–289. DOI: 10.1016/0148-9062(87)91231-9.

    Article  Google Scholar 

  29. WYCKOFF R D, BOTSET H G, MUSKAT M, REED D W. The measurement of the permeability of porous media for homogeneous fluids [J]. Review of Scientific Instruments, 1933, 4(7): 394–405. DOI: 10.1063/1.1749155.

    Article  Google Scholar 

  30. JIA C J, XU W Y, WANG H L, WANG R B, YU J, YAN J. Stress dependent permeability and porosity of low-permeability rock [J]. Journal of Central South University, 2017, 24(10): 2396–2405. DOI: 10.1007/s11771-017-3651-1.

    Article  Google Scholar 

  31. ZOBACK M D, BYERLEE J D. The effect of microcrack dilatancy on the permeability of westerly granite [J]. Journal of Geophysical Research Atmospheres, 1975, 80(5): 752–755. DOI: 10.1029/JB080i005p00752.

    Article  Google Scholar 

  32. BIOT M A. General theory of three-dimensional consolidation [J]. Journal of Applied Physics, 1941, 12: 155–164. http://pdfs.semanticscholar.org/20aa/1691c248a5585a49db224411150af8b7fed1.pdf.

    Article  MATH  Google Scholar 

  33. QIU S L, FENG X T, ZHANG C Q, ZHOU H, SUN F. Experimental research on mechanical properties of deep-buried marble under different unloading rates of confining pressures [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1807–1817. http://www.rockmech.org/EN/abstract/abstract20267.shtml. (in Chinese)

    Google Scholar 

  34. LEMAITRE J. A continuous damage mechanics model for ductile fracture [J]. Journal of Engineering Materials and Technology, 1985, 107(1): 83–89. DOI: 10.1115/1.3225775.

    Article  Google Scholar 

  35. LEMAITRE J, DESMORAT R. Engineering damage mechanics: ductile, creep, fatigue and brittle failures [M]. Germany: Springer, 2005.

    Google Scholar 

  36. WU Y Q, CAO G Z. WANG D W. Microfraturing process of rock by real-time observation of X-ray CT [J]. Chinese Journal of Applied Mechanics, 2005, 22(3): 484–490. DOI: 10.3969/j.issn.1000-4939.2005.03.034. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-an Tang  (唐春安).

Additional information

Foundation item: Project(2014CB047100) supported by the National Basic Research Program of China (973 Program); Projects(51679093/E090705, 51774147/E0409) supported by the National Natural Science Foundation of China; Project(2017J01094) supported by the Natural Science Foundation of Fujian Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Tang, Ca., Yu, J. et al. Experimental investigation on deformation characteristics and permeability evolution of rock under confining pressure unloading conditions. J. Cent. South Univ. 25, 1987–2001 (2018). https://doi.org/10.1007/s11771-018-3889-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3889-2

Key words

关键词

Navigation