Skip to main content
Log in

Effects of ultrasonic vibration on performance and microstructure of AZ31 magnesium alloy under tensile deformation

超声振动对AZ31 镁合金拉伸变形过程中材料性能及微观组织影响的研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Ultrasonic vibration can reduce the forming force, decrease the friction in the metal forming process and improve the surface quality of the workpiece effectively. Tensile tests of AZ31 magnesium alloy were carried out. The stress–strain relationship, fracture modes of tensile specimens, microstructure and microhardness under different vibration conditions were analyzed, in order to study the effects of the ultrasonic vibration on microstructure and performance of AZ31 magnesium alloy under tensile deformation. The results showed that the different reductions of the true stress appeared under various ultrasonic vibration conditions, and the maximum decreasing range was 4.76%. The maximum microhardness difference among the 3 nodes selected along the specimen was HV 10.9. The fracture modes, plasticity and microstructure of AZ31 magnesium alloy also were affected by amplitude and action time of the ultrasonic vibration. The softening effect and the hardening effect occurred simultaneously when the ultrasonic vibration was applied. When the ultrasonic amplitude was 4.6 μm with short action time, the plastic deformation was dominated by twins and the softening effect was dominant. However, the twinning could be inhibited and the hardening effect became dominant in the case of high ultrasonic energy.

摘要

超声振动塑性成形技术能显著降低设备成形力, 减少模具与工件间的摩擦, 可有效提高制品的 表面质量和尺寸精度。通过进行AZ31 镁合金退火态棒材常规拉伸和不同激振方式条件下的振动拉伸 实验, 对比不同实验条件下的变形载荷曲线, 拉伸试样断裂方式, 显微硬度值, 晶粒形状、尺寸的变 化, 研究超声振动在AZ31 镁合金拉伸变形中的作用。结果表明, 施加超声振动条件不同, 真实应力 下降幅度不同, 最大降幅为4.76%。沿着试样拉伸方向所取3 个点的最大硬度差为 HV 10.9。AZ31 镁 合金的断裂方式、塑性和显微组织也受超声振动幅值和作用时间的影响。超声振动作用下, 软化效应 和硬化效应同时发生。当振幅为4.6 μm, 且作用时间较短时, 塑性变形以孪晶为主, 软化效应占主导 地位。当超声能量较高时, 孪生被抑制, 硬化效应占主导地位。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ALFRED V. Vibration dampening: US, 2361071 [P]. 1944.

    Google Scholar 

  2. BLAHA F, LANGENECKER B. Elongation of zinc monocrystals under ultrasonic action [J]. Die Natur Wissenschafen, 1955, 42(20): 556.

    Article  Google Scholar 

  3. LANGENECKER B. Effects of ultrasound on deformation characteristics of metals [J]. IEEE Transactions on Sonics and Ultrasonics, 1966, 13(1): 1–8. DOI: 10.1109/TSU. 1966.29367.

    Article  Google Scholar 

  4. AHMADI F, FARZIN M, MERATIAN M, LOEIAN S M, FOROUZAN M R. Improvement of ECAP process by imposing ultrasonic vibrations [J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(1–4): 503–512. DOI: 10.1007/s00170-015-6848-1.

    Article  Google Scholar 

  5. BAGHERZADEH S, ABRINIA K, LIU Y F, HAN Q Y. The effect of combining high-intensity ultrasonic vibration with ECAE process on the process parameters and mechanical properties and microstructure of aluminum 1050 [J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(1–4): 229–240. DOI: 10.1007/s00170-016-8779-x.

    Article  Google Scholar 

  6. XIE Z, GUAN Y, ZHAI J, ZHU L, ZHONG C. Study on ultrasonic vibration assisted upsetting of 6063 aluminum alloy [J]. Procedia Engineering, 2017, 207: 490–495. DOI: 10.1016/j.proeng.2017.10.810.

    Article  Google Scholar 

  7. IZUMI O, OYAMA K, SUZUKI Y. Effects of superimposed ultrasonic vibration on compressive deformation of metals [J]. Transactions of the Japan Institute of Metals, 1966, 7(3): 162–167. DOI: 10.2320/matertrans1960. 7.162.

    Article  Google Scholar 

  8. DAUD Y, LUCAS M, HUANG Z. Superimposed ultrasonic oscillations in compression tests of aluminium [J]. Ultrasonics, 2006, 44: e511–e515. DOI: 10.1016/j.ultras. 2006.05.116.

    Article  Google Scholar 

  9. DAUD Y, LUCAS M, HUANG Z H. Ultrasonic compression tests on aluminium [C]//Applied Mechanics and Materials. Trans Tech Publications. 2005, 3: 99–104. DOI:10.4028/www.scientific.net/AMM.3-4.99.

    Google Scholar 

  10. DAUD Y, LUCAS M, HUANG Z. Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium [J]. Journal of Materials Processing Technology, 2007, 186(1): 179–190. DOI: 10.1016/j.jmatprotec.2006.12.032.

    Article  Google Scholar 

  11. HUNG J C, TSAI Y C. Investigation of the effects of ultrasonic vibration-assisted micro-upsetting on brass [J]. Materials Science and Engineering: A, 2013, 580: 125–132. DOI: 10.1016/j.msea.2013.04.074.

    Article  Google Scholar 

  12. LIU Y X, SUSLOV S, HAN Q Y, HUA L, XU C. Comparison between ultrasonic vibration-assisted upsetting and conventional upsetting [J]. Metallurgical and Materials Transactions A, 2013, 44(7): 3232–3244. DOI: 10.1007/s11661-013-1651-9.

    Article  Google Scholar 

  13. DJAVANROODI F, AHMADIAN H, KOOHKAN K, NASERI R. Ultrasonic assisted-ECAP [J]. Ultrasonics, 2013, 53(6): 1089–1096. DOI: 10.1016/j.ultras.2013. 02.003.

    Article  Google Scholar 

  14. PASIERB A, WOJNAR A. An experimental investigation of deep drawing and drawing processes of thin-walled products with utilization of ultrasonic vibrations [J]. Journal of Materials Processing Technology, 1992, 34(1): 489–494. DOI: 10.1016/0924-0136(92)90145-I.

    Article  Google Scholar 

  15. JIMMA T, KASUGA Y, IWAKI N, MIYAZAWA O, MORI E, ITO K, HATANO H. An application of ultrasonic vibration to the deep drawing process [J]. Journal of Materials Processing Technology, 1998, 80: 406–412. DOI: 10.1016/S0924-0136(98) 00195–2.

    Article  Google Scholar 

  16. WEN T, GAO R, CHEN X. Influence of high frequency vibration on deep drawing process of AZ31 sheet at room temperature [J]. Journal of Shanghai Jiao Tong University: Science, 2012, 17: 456–460. DOI: 10.1007/s12204-012-1305-x.

    Article  Google Scholar 

  17. DUTTA R K, PETROV R H, DELHEZ R, HERMANS M, RICHARDSON I M, BOTTGER A J. The effect of tensile deformation by in situ ultrasonic treatment on the microstructure of low-carbon steel [J]. Acta Materialia, 2013, 61(5): 1592–1602. DOI: 10.1016/j.actamat. 2012.11. 036.

    Article  Google Scholar 

  18. LIU Y X, HAN Q Y, HUA L, XU C. Numerical and experimental investigation of upsetting with ultrasonic vibration of pure copper cone tip [J]. Ultrasonics, 2013, 53(3): 803–807. DOI: 10.1016/j.ultras. 2012.11.010.

    Article  Google Scholar 

  19. CULP D R, GENCSOY H T. Metal deformation with ultrasound [C]//Ultrasonics Symposium. Monterey, California, USA: IEEE, 1973: 195–198. DOI: 10.1109/ULTSYM.1973.196181.

    Google Scholar 

  20. WEN T, WEI L, CHEN X, PEI C. Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process [J]. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(1): 70–76. DOI: 10.1007/s12613-011-0402-4.

    Article  Google Scholar 

  21. DONG G, YANG Z, ZHAO J, ZHAO C. Stress–strain analysis on AA7075 cylindrical parts during hot granule medium pressure forming [J]. Journal of Central South University, 2016, 23(11): 2845–2857. DOI: 10.1007/s11771-016-3348-x.

    Article  MathSciNet  Google Scholar 

  22. CHEN G, ZHANG Y, XIA W, CHEN D. Microstructure and tensile creep resistance of Mg-5.5% Zn-(0.7%, 1.5%, 3.5%, 7.5%) Y alloys [J]. Journal of Central South University, 2015, 22: 4112–4122. DOI: 10.1007/s11771-015-2957-0.

    Article  Google Scholar 

  23. YOSHIDA F. A constitutive model of cyclic plasticity [J]. International Journal of Plasticity, 2000, 16(3): 359–380. DOI: 10.1016/S0749-6419(99)00058-3.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-jin Guan  (管延锦).

Additional information

Foundation item: Projects(51375269, 51675307) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Zd., Guan, Yj., Yu, Xh. et al. Effects of ultrasonic vibration on performance and microstructure of AZ31 magnesium alloy under tensile deformation. J. Cent. South Univ. 25, 1545–1559 (2018). https://doi.org/10.1007/s11771-018-3847-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3847-z

Key words

关键词

Navigation