Skip to main content
Log in

Power production enhancement with polyaniline composite anode in benthic microbial fuel cells

聚苯胺修饰阳极对海底微生物燃料电池的产能影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this study, conductive polymer polyaniline (PANI) is employed to modify the anodes of benthic microbial fuel cells (BMFC). Four electrochemical methods are used to synthesize the polyaniline anodes; the results show that the PANI modification, especially the pulse potential method for PANI synthesis could obviously improve the cell energy output and reduce the anode internal resistance. The anode is modified by PANI doped with Fe or Mn to further improve the BMFC performance. A maximum power density of 17.51 mW/m2 is obtained by PANI-Fe anode BMFC, which is 8.1 times higher than that of control. The PANI-Mn anode BMFC also gives a favorable maximum power density (16.78 mW/m2). Fe or Mn modification has better effect in improving the conductivity of polyaniline, thus improving the energy output of BMFCs. This work applying PANI composite anode into BMFC brings new development prospect and could promote the practical application of BMFC.

摘要

本研究采用电化学法在碳毡阳极的表面原位合成聚苯胺或聚苯胺–铁/锰复合物以改善阳极的电 化学性能,进而提高海底微生物燃料电池的产能。分别采用4 种方法合成聚苯胺,包括恒电位法、脉 冲电位法、循环伏安法和线性伏安法。结果表明,由于脉冲电流的存在,采用脉冲电位法合成的聚苯 胺具有颗粒小、比表面积大的优点,其改性阳极能够更有效地降低阳极内阻同时提高海底微生物燃料 电池的电能输出。采用脉冲电位法合成聚苯胺–铁/锰复合物修饰碳毡阳极,结果表明,铁/锰金属的掺 杂进一步增强了改性电极的导电性能,进而使电池的功率输出提升为未改性电极的8.1 和7.7 倍。本 研究首次将聚苯胺及其复合物改性阳极应用到海底微生物燃料电池中,对推动海底微生物燃料电池的 实用化具有一定意义。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DONOVAN C, DEWAN A, PENG H, HEO D, BEYENAL H. Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell [J]. Journal of Power Sources, 2011, 196(3): 1171–1177.

    Article  Google Scholar 

  2. LIU B, WEINSTEIN A, KOLLN M, GARRETT C, WANG L, BAGTZOGLOU A, KARRA U, LI Y, LI B. Distributed multiple-anodes benthic microbial fuel cell as reliable power source for subsea sensors [J]. Journal of Power Sources, 2015, 286: 210–216.

    Article  Google Scholar 

  3. LIU B, WILLIAMS I, LI Y, WANG L, BAGTZOGLOU A, MCCUTCHEON J, LI B. Towards high power output of scaled-up benthic microbial fuel cells (BMFCs) using multiple electron collectors [J]. Biosensors and Bioelectronics, 2016, 79: 435–441.

    Article  Google Scholar 

  4. JIANG Hai-ming, LUO Sheng-jun, SHI Xiao-shuang, DAI Meng, GUO Rong-bo. A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation [J]. Journal of Central South University, 2013, 20(2): 488–494.

    Article  Google Scholar 

  5. HAO Li-mei, YAN Xiao-le, XIE You, ZHANG Tao, CHEN Zhi. A rapid one-step electrodeposition process for fabrication of superhydrobic surfaces on anode and cathode [J]. Journal of Central South University, 2016, 23(7): 1576–1583.

    Article  Google Scholar 

  6. LAI Bin, TANG Xing-hua, LI Hao-ran, DU Zhu-wei, LIU Xin-wei, ZHANG Qian. Power production enhancement with a polyaniline modified anode in microbial fuel cells [J]. Biosensors and Bioelectronics, 2011, 28(1): 373–377.

    Article  Google Scholar 

  7. ZHAO Y, NAKANISHI S, WATANABE K, HASHIMOTO K. Hydroxylated and aminated polyaniline nanowire networks for improving anode performance in microbial fuel cells [J]. Journal of Bioscience and Bioengineering, 2011, 112(1): 63–66.

    Article  Google Scholar 

  8. SUN Min, SONG Wei, ZHAI Lin-feng, RU Xiao-rui, CUI Yu-zhi. Elucidating electro-oxidation kinetics of Fe(II) in the anode of air–cathode fuel cells from an Fe(II) speciation perspective [J]. Chemical Engineering Journal, 2013, 228: 781–789.

    Article  Google Scholar 

  9. FU Yu-bin, YU Jian, ZHANG Ye-long, MENG Yao. Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells [J]. Applied Surface Science, 2014, 317: 84–89.

    Article  Google Scholar 

  10. FU Yu-bin, XU Qian, ZAI Xue-rong, LIU Yuan-yuan, LU Zhi-kai. Low electrical potential anode modified with Fe/ferric oxide and its application in marine benthic microbial fuel cell with higher voltage and power output [J]. Applied Surface Science, 2014, 289: 472–477.

    Article  Google Scholar 

  11. SUN L, LIU X, LAU K K T, CHEN L, GU W. Electrodeposited hybrid films of polyaniline and manganese oxide in nanofibrous structures for electrochemical supercapacitor [J]. Electrochimica Acta, 2008, 53(7): 3036–3042.

    Article  Google Scholar 

  12. JIA Yu-hong, YE Long, KANG Xi, YOU Hong, WANG Shu-tao, YAO Jie. Photoelectrocatalytic reduction of perchlorate in aqueous solutions over Ag doped TiO2 nanotube arrays [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 328: 225–232.

    Article  Google Scholar 

  13. HE Z, MANSFELD F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies [J]. Energy & Environmental Science, 2009, 2(2): 215–219.

    Article  Google Scholar 

  14. QIAO Yan, LI Chang-ming, BAO Shu-juan, BAO Qiao-liang. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells [J]. Journal of Power Sources, 2007, 170(1): 79–84.

    Article  Google Scholar 

  15. HOU Jun-xian, LIU Zhong-liang, ZHANG Pei-yuan. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes [J]. Journal of Power Sources, 2013, 224: 139–144.

    Article  Google Scholar 

  16. WANG Ya-qiong, LI Bin, ZENG Li-zhen, CUI Dan, XIANG Xing-de, LI Wei-shan. Polyaniline/mesoporous tungsten trioxide composite as anode electrocatalyst for highperformance microbial fuel cells [J]. Biosensors and Bioelectronics, 2013, 41: 582–588.

    Article  Google Scholar 

  17. HONG S W, CHANG I S, CHOI Y S, CHUNG T H. Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell [J]. Bioresource Technology, 2009, 100(12): 3029–3035.

    Article  Google Scholar 

  18. WEI X L, WANG Y Z, LONG S M, BOBECZKO C, EPSTEIN A J. Synthesis and physical properties of highly sulfonated polyaniline [J]. Journal of the American Chemical Society, 1996, 118(11): 2545–2555.

    Article  Google Scholar 

  19. MACDIARMID A G, CHIANG J C, RICHTER A F, EPSTEIN A J. Polyaniline: A new concept in conducting polymers [J]. Synthetic Metals, 1987, 18(1–3): 285–290.

    Article  Google Scholar 

  20. WANG Hong-zhi, LIU Wei-hong, LI Jian, YAO Su-wei, ZHANG Wei-guo. Preparation and characterization of polyaniline film by potentiostatic pulse method [J]. Chemical Journal of Chinese Universities, 2012, 33(2): 421–425.

    Google Scholar 

  21. YOO J E, BUCHOLZ T L, JUNG S, LOO Y L. Narrowing the size distribution of the polymer acid improves PANI conductivity [J]. Journal of Materials Chemistry, 2008, 18(26): 3129–3135.

    Article  Google Scholar 

  22. RAY A, ASTURIAS G E, KERSHNER D L, RICHTER A F, MACDIARMID A G, EPSTEIN A J. Polyaniline: Doping, structure and derivatives [J]. Synthetic Metals, 1989, 29(1): 141–150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong You  (尤宏).

Additional information

Foundation item: Project(HIT.NSRIF.2014128) supported by the Fundamental Research Funds for the Central Universities, China; Project(2014M551257) supported by the China Postdoctoral Science Foundation; Project(WH20150208) supported by the Subject Development Foundation of Harbin Institute of Technology at Weihai, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Yh., Qi, Zl. & You, H. Power production enhancement with polyaniline composite anode in benthic microbial fuel cells. J. Cent. South Univ. 25, 499–505 (2018). https://doi.org/10.1007/s11771-018-3754-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3754-3

Keywords

关键词

Navigation