Skip to main content
Log in

Parametric modeling of carbon nanotubes and estimating nonlocal constant using simulated vibration signals-ARMA and ANN based approach

基于ARMA 和ANN 的碳纳米管参数化建模及非局域常数估计

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Nonlocal continuum mechanics is a popular growing theory for investigating the dynamic behavior of Carbon nanotubes (CNTs). Estimating the nonlocal constant is a crucial step in mathematical modeling of CNTs vibration behavior based on this theory. Accordingly, in this study a vibration-based nonlocal parameter estimation technique, which can be competitive because of its lower instrumentation and data analysis costs, is proposed. To this end, the nonlocal models of the CNT by using the linear and nonlinear theories are established. Then, time response of the CNT to impulsive force is derived by solving the governing equations numerically. By using these time responses the parametric model of the CNT is constructed via the autoregressive moving average (ARMA) method. The appropriate ARMA parameters, which are chosen by an introduced feature reduction technique, are considered features to identify the value of the nonlocal constant. In this regard, a multi-layer perceptron (MLP) network has been trained to construct the complex relation between the ARMA parameters and the nonlocal constant. After training the MLP, based on the assumed linear and nonlinear models, the ability of the proposed method is evaluated and it is shown that the nonlocal parameter can be estimated with high accuracy in the presence/absence of nonlinearity.

摘要

非局域连续介质力学是研究碳纳米管(CNTs)动态行为的一种新兴理论。在基于该理论的碳纳米 管振动行为数学建模中,非局域常数的估计是一个关键步骤。因此,本文提出一种基于振动的非局部 参数估计技术,该技术具有较低的仪器和数据分析成本,具有很强的竞争力。为此,利用线性理论和 非线性理论建立了碳纳米管的非局域模型。然后,通过数值求解控制方程,得到了CNT 在脉冲力作 用下的时间响应。利用这些时间响应,采用自回归滑动平均(ARMA)方法建立了CNT 的参数模型。引 入特征约简技术选择合适的ARMA 参数作为识别非局部常数值的特征。在此基础上,通过训练多层 感知器(MLP)网络,建立ARMA 参数与非局部常数之间的关系。在训练MLP 后,基于假设的线性模 型和非线性模型,对该方法的性能进行评估。结果表明,在非线性存在或不存在的情况下,该方法都 能够以较高的精度估计出非局部参数。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang L, Ni Q, Li M, Qian Q. The thermal effect on vibration and instability of carbon nanotubes conveying fluid [J]. Physica E: Low-dimensional Systems and Nanostructures, 2008, 40(10): 3179–3182.

    Article  Google Scholar 

  2. Rezaee M, Maleki V A. An analytical solution for vibration analysis of carbon nanotube conveying viscose fluid embedded in visco-elastic medium [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(4): 644–650.

    Google Scholar 

  3. Fathi R, Lotfan S, Sadeghi M H. Influence of imperfect end boundary condition on the nonlocal dynamics of CNTs [J]. Mechanical Systems and Signal Processing, 2017, 87: 124–135.

    Article  Google Scholar 

  4. Cao G, Chen X. Buckling of single-walled carbon nanotubes upon bending: Molecular dynamics simulations and finite element method [J]. Physical Review B, 2006, 73(15): 155435.

    Article  Google Scholar 

  5. Srivastava D, Barnard S T. Molecular dynamics simulation of large-scale carbon nanotubes on a shared-memory architecture [C]// Proceedings of the 1997 ACM/IEEE Conference on Supercomputing. NY, USA: ACM, 1997: 1–10.

    Google Scholar 

  6. Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young’s modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381(6584): 678–680.

    Article  Google Scholar 

  7. Fathi R, Lotfan S. The effect of calibrated nonlocal constant on the modal parameters and stability of axially compressed CNTs [J]. Physica E: Low-dimensional Systems and Nanostructures, 2016, 79: 139–146.

    Article  Google Scholar 

  8. Murmu T, Adhikari S. Nonlocal effects in the longitudinal vibration of double-nanorod systems [J]. Physica E: Low-dimensional Systems and Nanostructures, 2010, 43(1): 415–422.

    Article  Google Scholar 

  9. Adhikari S, Murmu T, Mccarthy M. Frequency domain analysis of nonlocal rods embedded in an elastic medium [J]. Physica E: Low-dimensional Systems and Nanostructures, 2014, 59: 33–40.

    Article  Google Scholar 

  10. Lotfan S, Fathi R, Ettefagh M M. Size-dependent nonlinear vibration analysis of carbon nanotubes conveying multiphase flow [J]. International Journal of Mechanical Sciences, 2016, 115: 723–735.

    Article  Google Scholar 

  11. Wang L. A modified nonlocal beam model for vibration and stability of nanotubes conveying fluid [J]. Physica E: Low-dimensional Systems and Nanostructures, 2011, 44(1): 25–28.

    Article  Google Scholar 

  12. Mirramezani M, Mirdamadi H R. Effects of nonlocal elasticity and Knudsen number on fluid–structure interaction in carbon nanotube conveying fluid [J]. Physica E: Low-dimensional Systems and Nanostructures, 2012, 44(10): 2005–2015.

    Article  Google Scholar 

  13. Ansari R, Rouhi H, Sahmani S. Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics [J]. International Journal of Mechanical Sciences, 2011, 53(9): 786–792.

    Article  Google Scholar 

  14. Rezaee M, Lotfan S. Non-linear nonlocal vibration and stability analysis of axially moving nanoscale beams with time-dependent velocity [J]. International Journal of Mechanical Sciences, 2015, 96: 36–46.

    Article  Google Scholar 

  15. Aydogdu M. Axial vibration of the nanorods with the nonlocal continuum rod model [J]. Physica E: Low-dimensional Systems and Nanostructures, 2009, 41(5): 861–864.

    Article  Google Scholar 

  16. Ansari R, Oskouie M F, Sadeghi F, Bazdidvahdati M. Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory [J]. Physica E: Low-dimensional Systems and Nanostructures, 2015, 74: 318–327.

    Article  Google Scholar 

  17. Pradhan S, Mandal U. Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect [J]. Physica E: Low-dimensional Systems and Nanostructures, 2013, 53: 223–232.

    Article  Google Scholar 

  18. Hoseinzadeh M, Khadem S. A nonlocal shell theory model for evaluation of thermoelastic damping in the vibration of a double-walled carbon nanotube [J]. Physica E: Low-dimensional Systems and Nanostructures, 2014, 57: 6–11.

    Article  Google Scholar 

  19. Murmu T, Pradhan S. Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM [J]. Physica E: Low-dimensional Systems and Nanostructures, 2009, 41(7): 1232–1239.

    Article  Google Scholar 

  20. Mase G T, Mase G E. Continuum mechanics for engineers [M]. CRC Press, 2010: 40–60.

    MATH  Google Scholar 

  21. Eringen A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves [J]. Journal of Applied Physics, 1983, 54(9): 4703–4710.

    Article  Google Scholar 

  22. Wang Q, Arash B. A review on applications of carbon nanotubes and graphenes as nano-resonator sensors [J]. Computational Materials Science, 2014, 82: 350–360.

    Article  Google Scholar 

  23. Wang Q, Wang C. The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes [J]. Nanotechnology, 2007, 18(7): 075702.

    Article  Google Scholar 

  24. Lee S I, Chung J. New non-linear modelling for vibration analysis of a straight pipe conveying fluid [J]. Journal of Sound and Vibration, 2002, 254(2): 313–325.

    Article  Google Scholar 

  25. Ljung L. System identification: theory for the user [M]. Englewood Cliffs, 1987: 112–140.

    Google Scholar 

  26. Lotfan S, Salehpour N, Adiban H, Mashroutechi A. Bearing fault detection using fuzzy C-means and hybrid C-means-subtractive algorithms [C]// International Conference on Fuzzy Systems (FUZZIEEE). Istanbul, Turkey: IEEE, 2015: 1–7.

    Google Scholar 

  27. Peeters B, De Roeck G. Stochastic system identification for operational modal analysis: A review [J]. Journal of Dynamic Systems, Measurement, and Control, 2001, 123(4): 659–667.

    Article  Google Scholar 

  28. Andersen P. Identification of civil engineering structures using vector ARMA models [D]. Aalborg University, 1997.

    Google Scholar 

  29. Hagan M T, Demuth H B, Beale M H. Neural network design [M]. Boston, 1996: 70–100.

    Google Scholar 

  30. Hornik K. Approximation capabilities of multilayer feedforward networks [J]. Neural Networks, 1991, 4(2): 251–257.

    Article  MathSciNet  Google Scholar 

  31. Yetilmezsoy K, Demirel S. Artificial neural network (ANN) approach for modeling of Pb (II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells [J]. Journal of Hazardous Materials, 2008, 153(3): 1288–1300.

    Article  Google Scholar 

  32. Cay Y, Cicek A, Kara F, Sagiroglu S. Prediction of engine performance for an alternative fuel using artificial neural network [J]. Applied Thermal Engineering, 2012, 37: 217–225.

    Article  Google Scholar 

  33. Roy S, Banerjee R, Bose P K. Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network [J]. Applied Energy, 2014, 119: 330–340.

    Article  Google Scholar 

  34. Dmuth H, Beale M. Neural network toolbox for use with Matlab, User’s Guide [M]. Natick, MA. 2000.

    Google Scholar 

  35. Li G, Shi J. On comparing three artificial neural networks for wind speed forecasting [J]. Applied Energy, 2010, 87(7): 2313–2320.

    Article  Google Scholar 

  36. Lotfan S, Ghiasi R A, Fallah M, Sadeghi M. ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II [J]. Applied Energy, 2016, 175: 91–99.

    Article  Google Scholar 

  37. Sadeghi M H, Lotfan S. Identification of non-linear parameter of a cantilever beam model with boundary condition non-linearity in the presence of noise: An NSI-and ANN-based approach [J]. Acta Mechanica, 2017, 228(12): 4451–4469.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Fathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfan, S., Fathi, R. Parametric modeling of carbon nanotubes and estimating nonlocal constant using simulated vibration signals-ARMA and ANN based approach. J. Cent. South Univ. 25, 461–472 (2018). https://doi.org/10.1007/s11771-018-3750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3750-7

Keywords

关键词

Navigation