Skip to main content
Log in

Heat transfer of copper/water nanofluid flow through converging-diverging channel

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temperature, the basic nonlinear partial differential equations are reduced to the ordinary differential equations. Then, these equations have been solved analytically and numerically for some values of the governing parameters, Reynolds number, Re, channel half angle, α, Prandtl number, Pr, and Eckert number, Ec, using Adomian decomposition method and the Runge-Kutta method with mathematic package. Analytical and numerical results are searched for the skin friction coefficient, Nusselt number and the velocity and temperature profiles. It is found on one hand that the Nusselt number increases as Eckert number or channel half-angle increases, but it decreases as Reynolds number increases. On the other hand, it is also found that the presence of Cu nanoparticles in a water base fluid enhances heat transfer between nonparallel plane walls and in consequence the Nusselt number increases with the increase of nanoparticles volume fraction. Finally, an excellent agreement between analytical results and those obtained by numerical Runge-Kutta method is highly noticed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JEFFERY G B. The two dimensional steady motion of a viscous fluid [J]. Phil Mag, 1915, 29: 455–465.

    Article  MATH  Google Scholar 

  2. HAMEL G. Spiralformige bewegungen zaher flussigkeiten [J]. Jahresbericht der deutshen Math Vereiniguug, 1916, 25: 34–60. (in German)

    MATH  Google Scholar 

  3. ROSENHEAD L. The steady two-dimensional radial flow of viscous fluid between two inclined plane walls [J]. Proc R Soc London, 1940, A175: 436–467.

    Article  MATH  Google Scholar 

  4. MILLSAPS K, POHLHAUSEN K. Thermal distributions in Jeffery-Hamel flows between non-parallel plane walls [J]. J Aero Sci, 1953, 20: 187–196.

    Article  MathSciNet  MATH  Google Scholar 

  5. FRAENKEL L E. Laminar flow in symmetrical channels with slightly curved walls. I. On the Jeffery-Hamel solutions for flow between plane walls [J]. Proc R Soc London, 1963, A267: 119–138.

    MathSciNet  MATH  Google Scholar 

  6. SHEIKHOLESLAMI M, GANJI D D, ASHORYNEJAD H R, ROKNI H B. Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method [J]. Appl Math Mech–Engl Ed, 2012, 33(1): 1553–1564.

    MathSciNet  MATH  Google Scholar 

  7. HATAMI M, SHEIKHOLESLAMI M, HOSSEINI M, GANJI D D. Analytical investigation of MHD nanofluid flow in non-parallel walls [J]. Journal of Molecular Liquids, 2014, 194: 251–259.

    Article  Google Scholar 

  8. ELLAHI R, MUBASHIR BHATTI M, RIAZ A, SHEIKHOLESLAMI M. Effects of magnetohydrodynamics on peristaltic flow of Jeffrey fluid in a rectangular duct through a porous medium [J]. Journal of Porous Media, 2014, 17(2): 143–157.

    Article  Google Scholar 

  9. BATCHELOR G K. An introduction to fluid dynamics [M]. Cambridge University Press, 1967.

    Google Scholar 

  10. WHITE F M. Viscous fluid flow [M]. Mc Graw Hill, 1974.

    Google Scholar 

  11. SSHLICHTING H, GERSTEN K. Boundary layer theory [M]. 8th revised edition. Springer, 2000.

    Google Scholar 

  12. CHOI S U S. Enhancing thermal conductivity of fluids with nanoparticles in developments and application of non Newtonian flows [J]. ASME FED-vol. 231/MD, 1995, 66: 99–105.

    Google Scholar 

  13. MURSHED S M S, LEONG K C, YANG C. Enhanced thermal conductivity of TiO2-water based nanofluids [J]. International Journal of Thermal Sciences, 2005, 44: 367–373.

    Article  Google Scholar 

  14. HONG T, YANG H, CHOI C J. Study of the enhanced thermal conductivity of Fe nanofluids [J]. Journal of Applied Physics, 2005: 064311–1–064311-4.

    Google Scholar 

  15. XIE H, ANG J, XI T, LIU Y, AI F, WU Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles [J]. Journal of Applied Physics, 2002, 91: 4568–4572.

    Article  Google Scholar 

  16. WANG Y, AVIDSON J L, JIANG L. Thermal conductivity of nanoparticle suspensions [C]//Proceedings of 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference USA, 2002: 10. 2514/6. 2002–3345.

    Google Scholar 

  17. PAK B C, CHO Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles [J]. Exp Heat Transfer, 1998, 11: 151–170.

    Article  Google Scholar 

  18. XUAN Y, LI Q. Investigation on convective heat transfer and flow features of nanofluids [J]. J Heat transfer, 2003, 125: 151–155.

    Article  Google Scholar 

  19. HE Y, JIN Y, CHEN H, DING Y, CANG D, LU H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe [J]. Int J Heat Mass Transfer, 2007, 50: 2272–2281.

    Article  MATH  Google Scholar 

  20. TORII S, YANG W J. Heat transfer augmentation of aqueous suspensions of nanodiamonds in turbulent pipe flow [J]. J Heat Transfer, 2009, 131: 043203–1-043203-5.

    Article  Google Scholar 

  21. SHEIKHOLESLAMI M, GANJI D D. Heat transfer of Cu-water nanofluid between parallel plates [J]. Powder Technology, 2013, 235: 873–879.

    Article  Google Scholar 

  22. KHANAFER K, VAFAI K, LIGHTSTONE M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids [J]. International Journal of Heat and Mass Transfer, 2003, 46: 3639–3653.

    Article  MATH  Google Scholar 

  23. KUZNETSOV A V, NIELD D. Natural convection boundary layer flow of nanofluid past a vertical plate [J]. Int J Thermal Sci, 2010, 49: 243–247.

    Article  Google Scholar 

  24. SHEIKHOLESLAMI M. KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel [J]. Physics Letters, 2014, A378: 3331–3339.

    Article  MATH  Google Scholar 

  25. SHEIKHOLESLAMI M. Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition [J]. European Physical Journal Plus, 2014, 11: 129–248.

    Google Scholar 

  26. SHEIKHOLESLAMI M, GANJI D D. Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput [J]. Methods Appl Mech Engrg, 2015, 283: 651–663.

    Article  MathSciNet  Google Scholar 

  27. SHEIKHOLESLAMI M, GANJI D D. Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method [J]. Physica A, 2015, 417: 273–286.

    Article  Google Scholar 

  28. SHEIKHOLESLAMI M, GANJI D D. Ferrohydrodynamic and Magnetohydrodynamic effects on ferrofluid flow and convective heat transfer [J]. Energy, 2014, 75: 400–410.

    Article  Google Scholar 

  29. LIAO S J. Beyond perturbation: Introduction to homotopy analysis method [M]. Boca Raton: Chapman and Hall/CRC Press, 2003.

    Book  Google Scholar 

  30. HE J H. Homotopy perturbation method: A new nonlinear analytical technique [J]. Appl Math Comput, 2003, 135: 73–79.

    Article  MathSciNet  MATH  Google Scholar 

  31. HE J H, WU X H. Variational iteration method: New development and applications [J]. Computers and Mathematics with Applications, 2007, 54: 881–894.

    Article  MathSciNet  MATH  Google Scholar 

  32. HE J H. Variational iteration method-Some recent results and new interpretations [J]. Journal of Computational and Applied Mathematics, 2007, 207: 3–17.

    Article  MathSciNet  MATH  Google Scholar 

  33. ADOMIAN G. Solving frontier problems of physics: The decomposition method [M]. Kluwer Academic Publishers, Dodrecht, 1994.

    Google Scholar 

  34. RASHIDI M M, DINARVAND S. Purely analytic approximate solutions for steady three-dimensional problem of condensation film on inclined rotating disk by homotopy analysis method [J]. Nonlinear Analysis: Real world applications, 2009, 10: 2346–2356.

    Article  MathSciNet  MATH  Google Scholar 

  35. BEONG I N, YUN B I. Intuitive approach to the approximate analytical solution for the Blasius problem [J]. Applied Mathematics and Computation, 2010, 215: 3489–3494.

    Article  MathSciNet  MATH  Google Scholar 

  36. WAZWAZ A M. The variational iteration method for solving two forms of Blasius equation on a half-infinite domain [J]. Applied Mathematics and Computation, 2007, 188: 485–491.

    Article  MathSciNet  MATH  Google Scholar 

  37. DOMAIRRY G, MOHSENZADEH A, FAMOURI M. The application of homotopy analysis method to solve nonlinear differential equation governing Jeffery-Hamel flow [J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14: 85–95.

    Article  MathSciNet  MATH  Google Scholar 

  38. JONEIDI A A, DOMAIRRY G, BABAELAHI M. Three analytical methods applied to Jeffery-Hamel flow [J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15: 3423–3434.

    Article  Google Scholar 

  39. ESMAILI Q, RAMIAR A, ALIZADEH E, GANJI D D. An approximation of the analytical solution of the Jeffery–Hamel flow by decomposition method [J]. Physics Letters, 2008, A372: 3434–3439.

    Article  MATH  Google Scholar 

  40. GANJI Z Z, GANJI D D, ESMAEILPOUR M. Study on nonlinear Jeffery–Hamel flow by He’s semi-analytical methods and comparison with numerical results [J]. Computers and Mathematics with Applications, 2009, 58: 2107–2116.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Rafik Sari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sari, M.R., Kezzar, M. & Adjabi, R. Heat transfer of copper/water nanofluid flow through converging-diverging channel. J. Cent. South Univ. 23, 484–496 (2016). https://doi.org/10.1007/s11771-016-3094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3094-0

Keywords

Navigation