Skip to main content
Log in

Diving control of underactuated unmanned undersea vehicle using integral-fast terminal sliding mode control

  • Mechanical Engineering, Control Science and Information Engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The problem of diving control for an underactuated unmanned undersea vehicle (UUV) considering the presence of parameters perturbations and wave disturbances was addressesed. The vertical motion of an UUV was divided into two noninteracting subsystems for surge velocity control and diving. To stabilize the vertical motion system, the surge velocity and the depth control controllers were proposed using backstepping technology and an integral-fast terminal sliding mode control (IFTSMC). It is proven that the proposed control scheme can guarantee that all the error signals in the whole closed-loop system globally converge to the sliding surface in finite time and asymptotically converge to the origin along the sliding surface. With a unified control parameters for different motion states, a series of numerical simulation results illustrate the effectiveness of the above designed control scheme, which also shows strong robustness against parameters perturbations and wave disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FOSSEN T I. Guidance and control of ocean vehicles [M]. 1st ed. New York, USA: John Wiley and Sons Ltd, 1994: 1–56.

    Google Scholar 

  2. FOSSEN T I. Marine control systems: guidance, navigation, and control of ships, rigs and underwater vehicles [M]. Tiller, Norway: Marine Cybernetics, 2002: 1–48.

    Google Scholar 

  3. FOSSEN T I. Handbook of marine craft hydrodynamics and motion control [M]. 1st ed. New York, USA: John Wiley and Sons Ltd, 2011: 133–186.

    Book  Google Scholar 

  4. ANTONELLI G. Underwater robots: Motion and force control of vehicle-manipulator systems [M]. Berlin, Germany: Springer Verlag, 2010: 1–44.

    Google Scholar 

  5. DO K D, PAN J. Control of ships and underwater vehicles: Design for underactuated and nonlinear marine systems [M]. London, UK: Springer Verlag, 2012: 295–338.

    Google Scholar 

  6. YUH J. Design and control of autonomous underwater robots: A survey [J]. Autonomous Robots, 2000, 8(1):7–24.

    Article  Google Scholar 

  7. BROCKETT R W. Asymptotic stability and feedback stabilization: Differential geometric control theory [M]. Boston, USA: Birkhauser, 1983: 181–191.

    Google Scholar 

  8. YOUNG S H. Forces and moments acting on a submersible moving beneath the free surface or near a wall [R]. Alexandria, Va: David W. Taylor Naval Ship Research and Development Center, 1987.

    Google Scholar 

  9. OLLER E D. Forces and moments due to unsteady motion of an underwater vehicle [D]. Cambridge, Massachusetts: Massachusetts Institute of Technology, 2003.

    Google Scholar 

  10. MA Cheng, LIAN Lian. Maneuvering control and simulation technology of underwater vehicle [M]. Beijing, China: National Defense Industry Press, 2009: 29–33. (in Chinese)

    Google Scholar 

  11. UENO M, TSUKADA Y, SAWADA H. A prototype of submersible surface ship and its hydrodynamic characteristics [J]. Ocean Engineering, 2011, 38(14/15): 1686–1695.

    Article  Google Scholar 

  12. YUE Chun-feng, GUO Shu-xiang, SHI Li-wei. Hydrodynamic analysis of the spherical underwater robot SUR-II [J]. International Journal of Advanced Robotic Systems, 2013, 10: 1–12.

    Google Scholar 

  13. NEWMAN J N. Marine hydrodynamics [M]. Cambridge, Massachusetts, USA: Massachusetts Institute of Technology Press, 1977: 1–7.

    Google Scholar 

  14. MANDZUKA S. Mathematical model of a submarine dynamics at the periscope depth [J]. Journal of System Simulation, 1998, 46(2): 129–137.

    Google Scholar 

  15. MOREIRA L, SOARES C G. H 2 and H designs for diving and course control of an autonomous underwater vehicle in presence of waves [J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 69–88.

    Article  Google Scholar 

  16. CRISTI R, PAPOULIAS F A, HEALEY A J. Adaptive sliding mode control of autonomous underwater vehicles in the dive plane [J]. IEEE Journal of Oceanic Engineering, 1990, 15(3): 152–160.

    Article  Google Scholar 

  17. SILVESTRE C, PASCOAL A. Depth control of the INFANTE AUV using gain-scheduled reduced order output feedback [C]// Proceedings of the 16th IFAC World Congress. Czech Republic: IFAC, 2005: 91–96.

    Google Scholar 

  18. SILVESTRE C, PASCOAL A. Depth control of the INFANTE AUV using gain-scheduled reduced order output feedback [J]. Control Engineering Practice, 2007, 15(7): 883–895.

    Article  Google Scholar 

  19. FENG Z, ALLEN R. Reduced Order H control of an autonomous underwater vehicle [J]. Control Engineering Practice, 2004, 12(12): 1511–1520.

    Article  Google Scholar 

  20. LAPIERRE L. Robust diving control of an AUV [J]. Ocean Engineering, 2009, 36(1): 92–104.

    Article  Google Scholar 

  21. NAIK M S, SINGH S N. State-dependent Riccati equation-based robust dive plane control of AUV with control constraints [J]. Ocean Engineering, 2007, 34(11/12): 1711–1723.

    Article  Google Scholar 

  22. LI Ji-hong, LEE P M. Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle [J]. Ocean Engineering, 2005, 32(17/18): 2165–2181.

    Article  Google Scholar 

  23. JIA He-ming, ZHANG Li-jun, BIAN Xin-qian, YAN Zhe-ping, CHENG Xiang-qin, ZHOU Jia-jia. A nonlinear bottom-following controller for underactuated autonomous underactuated vehicles [J]. Journal of Central South University, 2012, 19(5): 1240–1248.

    Article  Google Scholar 

  24. WANG Yao-yao, GU Lin-yi, GAO Ming, JIA Xian-jun, LIU Jun, ZHOU Dong-hui. Depth control of remotely operated vehicles using nonsingular fast terminal sliding mode control method [C]// Proceedings of OCEANS 2013 MTS/IEEE San Diego Conference: An Ocean in Common. San Diego, USA: IEEE, 2013: 1–6.

    Google Scholar 

  25. LAKHEKAR G V, SAUNDARMA L. Novel adaptive fuzzy sliding mode controller for depth control of an underwater vehicles [C]// Proceedings of IEEE International Conference on Fuzzy Systems 2013. Hyderabad, India: IEEE, 2013: 1–7.

    Google Scholar 

  26. UTKIN V I. Variable structure systems with sliding modes [J]. IEEE Transactions on Automatic Control, 1977, 22(2): 212–222.

    Article  MathSciNet  MATH  Google Scholar 

  27. UTKIN V I. Sliding mode control design principles and applications to electric drives [J]. IEEE Transactions on Industrial Electronics, 1993, 40(1): 23–36.

    Article  Google Scholar 

  28. EDWARDS C, SPURGEON S K. Sliding mode control: Theory and applications [M]. New York, USA: Taylor & Francis, 1998: 1–18.

    Google Scholar 

  29. ZHANG Niao-na. Terminal sliding mode control theory and applications [M]. Beijing, China: Science Press, 2011: 1–14. (in Chinese)

    Google Scholar 

  30. ZAK M. Terminal attractors for addressable memory in neural networks [J]. Physics Letters A, 1988, 133(1/2): 18–22.

    Article  Google Scholar 

  31. YU Xing-huo, MAN Zhi-hong. Fast terminal sliding-mode control design for nonlinear dynamical systems [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(2): 261–264.

    Article  MathSciNet  Google Scholar 

  32. FENG Yong, YU Xing-huo, MAN Zhi-hong. Non-singular terminal sliding-mode control of rigid manipulators [J]. Automatica, 2002, 38(12): 2159–2167.

    Article  MathSciNet  MATH  Google Scholar 

  33. YANG Jun, LI Shi-hua, YU Xing-huo. Sliding mode control for systems with mismatched uncertainties via a disturbance observer [J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 160–169.

    Article  Google Scholar 

  34. YANG Jun, LI Shi-hua, SU Jin-ya, YU Xing-huo. Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances [J]. Automatica, 2013, 49(7): 2287–2291.

    Article  MathSciNet  Google Scholar 

  35. YANG Jun, SU Jin-ya, LI Shi-hua, YU Xing-huo. High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach [J]. IEEE Transactions on Industrial Informatics, 2014, 10(1): 604–614.

    Article  Google Scholar 

  36. PETTERSEZN K Y, EGELAND O. Time-varying exponential stabilization of the position and attitude of an underactuated autonomous underwater vehicle [J]. IEEE Transactions on Automatic Control, 1999, 44(1): 112–115.

    Article  MathSciNet  MATH  Google Scholar 

  37. PIERSON W J, MOSKOWITZ L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodsku [R]. Mississippi, USA: Naval Oceanographic Office, US, 1969.

    Google Scholar 

  38. ABKOWITZ M A, MURDEY D C, GERRITSMA J, TASAI F, GOODRICH G J, WERMTER R, MATHEWS S T, YAMANOUCHI Y. Report of the seakeeping committee [C]// Proceedings of the 12th International Towing Tank Conference. Rome, Italy: ITTC, 1969: 813–821.

    Google Scholar 

  39. LICEAGA-CASTRO E, van der MOLEN G M. Submarine H depth control under wave disturbances [J]. IEEE Transactions on Control Systems Technology, 1995, 3(3): 338–346.

    Article  MATH  Google Scholar 

  40. FALTINSEN O M. Sea loads on ships and offshore structures [M]. Cambridge, UK: Cambridge University Press, 1993: 131–256.

    Google Scholar 

  41. HUANG Xiang-qiang, LIN Wei, YANG Bo. Global finite-time stabilization of a class of uncertain nonlinear systems [J]. Automatica, 2005, 41(5): 881–888.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-miao Yu  (于浩淼).

Additional information

Foundation item: Projects (51179038, 51309067) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Zp., Yu, Hm. & Hou, Sp. Diving control of underactuated unmanned undersea vehicle using integral-fast terminal sliding mode control. J. Cent. South Univ. 23, 1085–1094 (2016). https://doi.org/10.1007/s11771-016-0358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-0358-7

Key words

Navigation