Skip to main content
Log in

Preparation of MnO2 and calcium silicate hydrate from electrolytic manganese residue and evaluation of adsorption properties

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Electrolytic manganese residue (EMR), a high volume byproduct resulting from the electrolytic manganese industry, was used as a cheap and abundant chemical source for preparing MnO2 and EMR-made calcium silicate hydrate (EMR-CSH). The MnO2 is successfully synthesized from the metal cations extracted from EMR, which can effectively recycle the manganese in the EMR. By the combination of XRD, SEM and EDX analysis, the as-prepared MnO2 is found to exhibit a single-phase with the purity of 90.3%. Furthermore, EMR-CSH is synthesized from EMR via hydrothermal method. Based on the detailed analyses using XRD, FT-IR, FE-SEM, EDX and BET surface area measurement, the product synthesized under the optimum conditions (pH 12.0 and 100 °C) is identified to be a calcium silicate hydrate with a specific surface area of 205 m2/g incorporating the slag-derived metals (Al and Mg) in its structure. The as-synthesized material shows good adsorption properties for removal of Mn2+ and phosphate ions diluted in water, making it a promising candidate for efficient bulk wastewater treatment. This conversion process, which enables us to fabricate two different kinds of valuable materials from EMR at low cost and through convenient preparation steps, is surely beneficial from the viewpoint of the chemical and economical use of EMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HAGELSTEIN K. Globally sustainable manganese metal production and use [J]. Journal of Environmental Management, 2009, 90(12):3736–3740.

    Article  Google Scholar 

  2. DUAN Ning, DAN Zhi-gang, WANG Fan, PAN Cen-xuan, ZHOU Chang-bo, JIANG Lin-hua. Electrolytic manganese metal industry experience based China’s new model for cleaner production promotion [J]. Journal of Cleaner Production, 2011, 19(17):2082–2087.

    Article  Google Scholar 

  3. LIU Tang-meng, ZHONG Hong, YIN Xin-rong. Research of resource utilization of electrolytic manganese slag [J]. China’s Manganese Industry, 2012, 30: 1–6. (in Chinese)

    Google Scholar 

  4. SUNDARAY S K, NAYAK B B, LIN S, BHATTAC D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments-A case study: Mahanadi basin, India [J]. Journal of Hazardous Materials, 2011, 186(2):1837–1846.

    Article  Google Scholar 

  5. YAN Chang-zhou, LI Qing-zhao, ZHANG Xian, LI Guo-xin. Mobility and ecological risk assessment of heavy metals in surface sediments of Xiamen Bay and its adjacent areas, China [J]. Environmental Earth Sciences, 2010, 60(7):1469–1479.

    Article  MATH  Google Scholar 

  6. LIU Jing-ling, CHEN Qiu-ying, LI Yong-li. Ecological risk assessment of water environment for Luanhe River Basin based on relative risk model [J]. Ecotoxicology, 2010, 19(8):1400–1415.

    Article  Google Scholar 

  7. LI Chang-xin, ZHONG Hong, WANG Shuai, XUE Jian-rong. Leaching behavior and risk assessment of heavy metals in a landfill of electrolytic manganese residue in western Hunan, China [J]. Human and Ecological Risk Assessment, 2014, 20(5):1249–1263.

    Article  Google Scholar 

  8. HU Nan, ZHENG Ji-fang, DING De-xin, LIU Jun, YANG Lu-qing, YIN Jie, LI Guang-yue, WANG Yong-dong, LIU Yu-long. Metal pollution in Huayuan River in Hunan Province in China by manganese sulphate waste residue [J]. Bulletin of Environmental Contamination and Toxicology, 2009, 83(4):583–590.

    Article  Google Scholar 

  9. DUAN Ning, WANG Fan, ZHOU Chang-bo, ZHU Chun-lei, YU Hong-bing. Analysis of pollution materials generated from electrolytic manganese industries in China [J]. Resources, Conservation and Recycling, 2010, 54(8):506–511.

    Article  Google Scholar 

  10. ZHOU Zheng-guo, XU Long-jun, XIE Jin-lian, LIU Cheng-lun. Effect of manganese tailings on capsicum growth [J]. Chinese Journal of Geochemistry, 2009, 28(4):427–431.

    Article  Google Scholar 

  11. WANG Jia, PENG Bing, CHAI Li-yuan, ZHANG Qiang, LIU Qin. Preparation of electrolytic manganese residue-ground granulated blast furnace slag cement [J]. Powder Technology, 2013, 241:12–18.

    Article  Google Scholar 

  12. HOU Peng-kun, QIAN Jue-shi, WANG Zhi, DENG Cheng. Production of quasi-sulfoaluminate cementitious materials with electrolytic manganese residue [J]. Cement and Concrete Composites, 2012, 34(2):248–254.

    Article  Google Scholar 

  13. LI Hui, ZHANG Zhao-hui, TANG Si-ping, LI Yan-an, ZHANG Yong-kang. Ultrasonically assisted acid extraction of manganese from slag [J]. Ultrasonics Sonochemistry, 2008, 15(4):339–343.

    Article  MathSciNet  MATH  Google Scholar 

  14. XIN Bao-ping, CHEN Bing, DUAN Ning, ZHOU Chang-bo. Extraction of manganese from electrolytic manganese residue by bioleaching [J]. Bioresource Technology, 2011, 102(2):1683–1687.

    Article  Google Scholar 

  15. TAO Chang-yuan, SHA Ji-wen, LIU Zuo-hua, SUN Da-gui, DU Jun. Study on recovery of high valent maganese from KMnO4 slag [J]. Chinese Journal of Environmental Engineering, 2011, 5(10): 2342–2346. (in Chinese)

    Google Scholar 

  16. TAN Shi-yu, LUO Ting, ZHU Bi-jue. Study on the recycling of manganese dioxide in process of hydroquinone production by aniline oxidation [J]. Applied Chemical Industry, 2009, 38(10): 1542–1544. (in Chinese)

    Google Scholar 

  17. PENG Tie-feng, XU Long-jun, CHEN Hong-chong. Preparation and characterization of high specific surface area Mn3O4 from electrolytic manganese residue [J]. Central European Journal of Chemistry, 2010, 8(5):1059–1068.

    Article  Google Scholar 

  18. YU P, KIRKPATRICK R J, POE B, MCMILLAN P F, CONG X D. Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy [J]. Journal of the American Ceramic Society, 1999, 82(3):742–748.

    Article  Google Scholar 

  19. RICHARDSON I G. The calcium silicate hydrates [J]. Cement and Concrete Research, 2008, 38(2):137–158.

    Article  Google Scholar 

  20. ZIEGLER F, GIERE R, JOHNSON C A. Sorption mechanisms of zinc to calcium silicate hydrate: Sorption and microscopic investigations [J]. Environmental Science & Technology, 2001, 35(22):4556–4561.

    Article  Google Scholar 

  21. KUWAHARA Y, TAMAGAWA S, FUJITANI T, YAMASHITA H. A novel conversion process for waste slag: synthesis of calcium silicate hydrate from blast furnace slag and its application as a versatile adsorbent for water purification [J]. Journal of Materials Chemistry A, 2013, 1:7199–7210.

    Article  Google Scholar 

  22. SOUTHAM D C, LEWIS T W, MCFARLANE A J, JOHNSTON J H. Amorphous calcium silicate as a chemisorbent for phosphate [J]. Current Applied Physics, 2004, 4(2):355–358.

    Article  Google Scholar 

  23. LI Gui-cun, JIANG Li, PANG Hong-tao, PENG Hong-rui. Synthesis of γ-MnO2 single-crystalline nanobelts [J]. Materials Letters, 2007, 61(16):3319–3322.

    Article  Google Scholar 

  24. WEI Ming-deng, KONISHI Y, ZHOU Hao-shen, SUGIHARA H, ARAKAWA H. Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process [J]. Nanotechnology, 2005, 16(2):245–249.

    Article  Google Scholar 

  25. SHEN Wei-guo, XIAO Li-qi, ZHAO Su-ling, ZHOU Ming-kai, MA Wei. Investigation on nano-scale microstructure of C-S-H with atomic force microscope [J]. Journal of the Chinese Ceramic Society, 2008, 36(4):487–493.

    Google Scholar 

  26. DONG Ya, LU Chun-hua, NI Ya-ru, XU Zhong-zi. Drug loading capacity and morphology controlling of hydration calcium silicate mesoporous spheres [J]. Bulletin of the Chinese Ceramic Society, 2012, 31(3): 511–515. (in Chinese)

    Google Scholar 

  27. HE Yong-jia, ZHAO Xiao-gang, LU Lin-nu, STRUBLE L J, HU Shu-guang. Effect of C/S ratio on morphology and structure of hydrothermally synthesized calcium silicate hydrate [J]. Journal of Wuhan University of Technology: Mater Sci Ed, 2011, 26(4):770–773.

    Article  Google Scholar 

  28. MEISZTERICS A, ROSTA L, PETERLIK H, ROHONCZY J, KUBUKI S, HENITS P, SINKO K. Structural characterization of gel-derived calcium silicate systems [J]. The Journal of Physical Chemistry A, 2010, 114(38):10403–10411.

    Article  Google Scholar 

  29. YASUTAKA K, TAKATO Y, TAKASHI K, KOHSUKE M, HIROMI Y. Enhancement in adsorption and catalytic activity of enzymes immobilized on phosphorus-and calcium-modified MCM-41 [J]. The Journal of Physical Chemistry B, 2011, 115(34):10335–10345.

    Article  Google Scholar 

  30. JOHNSTON J H, SMALL A C. Photoactivity of nano-structured calcium silicate-titanium dioxide composite materials [J]. Journal of Materials Chemistry, 2011, 21(4):1240–1245.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Zhong  (钟宏) or Shuai Wang  (王帅).

Additional information

Foundation item: Project(21376273) supported by the National Natural Science Foundation of China; Project(2010FJ1011) supported by the Research Fund of Science and Technology of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Cx., Zhong, H., Wang, S. et al. Preparation of MnO2 and calcium silicate hydrate from electrolytic manganese residue and evaluation of adsorption properties. J. Cent. South Univ. 22, 2493–2502 (2015). https://doi.org/10.1007/s11771-015-2777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2777-2

Key words

Navigation