Skip to main content
Log in

Sparse Bayesian learning in ISAR tomography imaging

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Inverse synthetic aperture radar (ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography (CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm (PFA) and the convolution back projection algorithm (CBP), usually suffer from the problem of the high sidelobe and the low resolution. The ISAR tomography image reconstruction within a sparse Bayesian framework is concerned. Firstly, the sparse ISAR tomography imaging model is established in light of the CT imaging theory. Then, by using the compressed sensing (CS) principle, a high resolution ISAR image can be achieved with limited number of pulses. Since the performance of existing CS-based ISAR imaging algorithms is sensitive to the user parameter, this makes the existing algorithms inconvenient to be used in practice. It is well known that the Bayesian formalism of recover algorithm named sparse Bayesian learning (SBL) acts as an effective tool in regression and classification, which uses an efficient expectation maximization procedure to estimate the necessary parameters, and retains a preferable property of the l 0-norm diversity measure. Motivated by that, a fully automated ISAR tomography imaging algorithm based on SBL is proposed. Experimental results based on simulated and electromagnetic (EM) data illustrate the effectiveness and the superiority of the proposed algorithm over the existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHEN V C, QIAN S. Joint time-frequency transform for radar range-Doppler imaging [J]. IEEE Trans on Aerosp Electron Syst, 1998, 34(2): 486–499.

    Article  MathSciNet  Google Scholar 

  2. RANEY R K, RUNGE H, BAMLER R. Precision SAR processing using chirp scaling [J]. IEEE Trans on GRS, 1994, 32(7): 786–799.

    Google Scholar 

  3. HUANG Pei-kang, YIN Hong-cheng, XU Xiao-jian. Radar target characteristics [M]. Beijing: Publishing House of Electronic Industry, 2005: 266–269. (in Chinese).

    Google Scholar 

  4. DAVID C M, JAMES D O, WKENNETH J. A tomographic formulation of spotlight-mode synthetic aperture radar [J]. Proc IEEE, 1983, 71(9): 917–925.

    Google Scholar 

  5. KAK A C, SLANEY M. Principles of computerized tomographic imaging [M]. New York: IEEE Press, 1999.

    Google Scholar 

  6. CHEN Lei, SHAN Ou-yang. A time-domain beamformer for UWB through wall imaging [C]// Proceeding IEEE Region 10 Conference. Taipei: IEEE Press, 2007: 1–4.

    Google Scholar 

  7. JAKOWATZ C V, WAHL D E, PAUL H D, THOMPSON P A. Spotlight-mode synthetic aperture radar: A signal processing approach [M]. Boston: Kluwer Academic Publishers, 1996.

    Book  Google Scholar 

  8. DESAI M D, JENKINS W K. Convolution back projection image reconstruction for spotlight mode synthetic aperture radar [J]. IEEE Trans on Image Process, 1992, 1(4): 505–517.

    Article  Google Scholar 

  9. GLENTIS G O, ZHAO Ke-xin, JAKOBSSON A, LI Jian. Non-parametric high-resolution SAR imaging [J]. IEEE Trans on Signal Processing, 2013, 61(7): 1614–1624.

    Article  MathSciNet  Google Scholar 

  10. VU D, XUE Ming, TAN Xing, LI Jian. A Bayesian approach to SAR imaging [J]. Digital Signal Processing, 2013, 23(3): 852–858.

    Article  MathSciNet  Google Scholar 

  11. GERRY M J, POTTER L C, GUPTA I J, MERWE A V D. A parametric model for synthetic aperture radar measurements [J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179–1188.

    Article  Google Scholar 

  12. ZOU Fei, LI Xiang, ROBERTO T. Inverse synthetic aperture radar imaging based on sparse signal processing [J]. Journal of Central South University of Technology, 2011, 18(5): 1609–1613.

    Article  Google Scholar 

  13. DU Xiao-yong, DUAN Chong-wen, HU Wei-dong. Sparse representation based autofocusing technique for ISAR images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1826–1835.

    Article  Google Scholar 

  14. CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509.

    Article  MATH  MathSciNet  Google Scholar 

  15. ENDER J H G. On compressive sensing applied to radar [J]. Signal Processing, 2010, 90(5): 1402–1414.

    Article  MATH  Google Scholar 

  16. CETIN M, KARL W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization [J]. IEEE Trans on Image Process, 2001, 10(4): 623–631.

    Article  MATH  Google Scholar 

  17. TROPP J A, WRIGHT J. Computational methods for sparse solution of linear inverse problems [J]. Proc IEEE, 2010, 98(6): 948–958.

    Article  Google Scholar 

  18. SADEGH S, ÇETIN M, ALI M, SHIRAZI M. Multiple feature-enhanced SAR imaging using sparsity in combined dictionaries [J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 821–825

    Article  Google Scholar 

  19. NEEDELL D, TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples [J]. Appl and Comp Harmonic Anal, 2009, 26(3): 301–321.

    Article  MATH  MathSciNet  Google Scholar 

  20. NEEDELL D, VERSHYNIN R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 310–316.

    Article  Google Scholar 

  21. TIPPING M E. Sparse Bayesian learning and the relevance vector machine [J]. Journal of Machine Learning Research, 2001, 2(1): 211–244.

    MathSciNet  Google Scholar 

  22. WIPF D P, RAO B D. Sparse Bayesian learning for basis selection [J]. IEEE Trans on Signal Processing, 2004, 52(8): 2153–2164.

    Article  MathSciNet  Google Scholar 

  23. JI Shi-hao, XUE Ya, CARIN L. Bayesian compressive sensing [J]. IEEE Trans on Signal Processing, 2008, 56(6): 2346–2356.

    Article  MathSciNet  Google Scholar 

  24. BABACAN S D, MOLINA R, KATSAGGELOS A K. Bayesian compressive sensing using Laplace priors [J]. IEEE Trans on Signal Processing, 2010, 19(1): 53–63.

    MathSciNet  Google Scholar 

  25. SU Wu-ge, WANG Hong-qiang, YANG Zhao-cheng. SAR imaging based on attributed scatter model using sparse recovery techniques [J]. Journal of Central South University, 2014, 21(1): 223–231.

    Article  Google Scholar 

  26. ZHANG Zhi-ling, RAO B. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912–926.

    Article  Google Scholar 

  27. ZHANG Zhi-ling, RAO B. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation [J]. IEEE Trans on Signal Processing, 2013, 61(8): 2009–2015.

    Article  Google Scholar 

  28. HOSEIN G M, ZADEH M B, JUTTEN C. A fast approach for over complete sparse decomposition based on smoothed l0-norm [J]. IEEE Trans on Signal Process, 2009, 57(1): 289–301.

    Article  Google Scholar 

  29. YARDIBI T, LI Jian, STOICA P, XUE Ming, BAGGEROER A B. Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares [J]. IEEE Trans Aerospace Electron Syst, 2010, 46(1): 425–443.

    Article  Google Scholar 

  30. ROBERTS W, STOICA P, LI Jian, YARDIBI T, SADJADI F A. Iterative adaptive approaches to MIMO radar imaging [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 5–20.

    Article  Google Scholar 

  31. YANG Zhao-cheng, LIU Zheng, LI Xiang, NIE Lei. Performance analysis of STAP algorithms based on fast sparse recovery techniques [J]. Progress in Electromagnetic Research B, 2012, 41: 251–268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu-ge Su  (苏伍各).

Additional information

Foundation item: Project(61171133) supported by the National Natural Science Foundation of China; Project(11JJ1010) supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province, China; Project(61101182) supported by the National Natural Science Foundation for Young Scientists of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Wg., Wang, Hq., Deng, B. et al. Sparse Bayesian learning in ISAR tomography imaging. J. Cent. South Univ. 22, 1790–1800 (2015). https://doi.org/10.1007/s11771-015-2697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2697-1

Key words

Navigation