Skip to main content
Log in

Optimized staggered-grid finite-difference operators using window functions

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

The staggered-grid finite-difference (SGFD) method has been widely used in seismic forward modeling. The precision of the forward modeling results directly affects the results of the subsequent seismic inversion and migration. Numerical dispersion is one of the problems in this method. The window function method can reduce dispersion by replacing the finite-difference operators with window operators, obtained by truncating the spatial convolution series of the pseudospectral method. Although the window operators have high precision in the low-wavenumber domain, their precision decreases rapidly in the high-wavenumber domain. We develop a least squares optimization method to enhance the precision of operators obtained by the window function method. We transform the SGFD problem into a least squares problem and find the best solution iteratively. The window operator is chosen as the initial value and the optimized domain is set by the error threshold. The conjugate gradient method is also adopted to increase the stability of the solution. Approximation error analysis and numerical simulation results suggest that the proposed method increases the precision of the window function operators and decreases the numerical dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chao, C., Huang, J. P., Li, Z. C., et al., 2017, Reflection full-waveform inversion using a modified phase misfit function[J]: Applied Geophysics (English Edition), 14(3), 407–418.

    Google Scholar 

  • Chu, C. L., and Stoffa, P. L., 2012, Determination of finite-difference weights using scaled binomial windows: Geophysics, 77(3), W17–W26. doi: 10.1190/ GEO2011-0336.1

    Article  Google Scholar 

  • Diniz, P. S. R., Da Silva, E. A. B., Netto, S. L., 2010, Digital signal processing: system analysis and design [M], Cambridge University Press.

    Google Scholar 

  • Fornberg, B., 1987, The pseudospectral method: Comparisons with finite differences for the elastic wave equation: Geophysics, 52(4), 483–501. doi: 10.1190/1.1442319

    Article  Google Scholar 

  • Gazdag, J., 1981, Modeling of the acoustic wave equation with transform methods[J]: Geophysics, 46(6), 854–859.

    Article  Google Scholar 

  • Harris, F. J., 1978, On the use of windows for harmonic analysis with the discrete Fourier transform [J]: Proceedings of the IEEE, 66(1), 51–83.

    Article  Google Scholar 

  • Holberg, O., 1987, Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena [J]: Geophysical Prospecting, 35(6), 629–655.

    Article  Google Scholar 

  • Huang, J., Li, C., Wang, R., et al., 2015, Plane-Wave Least- Squares Reverse Time Migration for Rugged Topography [J]: Journal of Earth Science, 26(4), 471–480.

    Article  Google Scholar 

  • Igel, H., Mora, P., and Riollet, B., 1995, Anisotropic wave propagation through finite-difference grids. Geophysics, 60(4), 1203–1216. doi: 10.1190/1.1443849

    Article  Google Scholar 

  • Kaiser, J. F., 1974, Nonrecursive digital filter design using the I_0-Sinh window function: Proceedings of the 1974 IEEE International Symposium on Circuits and Systems, 20–23.

    Google Scholar 

  • Li, C., Huang, J., Li, Z., et al., 2016, Plane-wave leastsquare reverse time migration with encoding strategies [J]: Journal of Seismic Exploration, 25(2), 177–197.

    Google Scholar 

  • Liu, Y., 2013, Globally optimal finite-difference schemes based on least squares, Geophysics, 78(4), T113–T132.

    Article  Google Scholar 

  • Ren, Z., Liu, Y., and Zhang, Q., 2014, Multiscale viscoacoustic waveform inversion with the second generation wavelet transform and adaptive time–space domain finite-difference method [J]: Geophysical Journal International, 197(2), 948–974.

    Article  Google Scholar 

  • Robertsson, J. O. A., Blanch, J. O., Symes, W. W., et al., 1994, Galerkin-wavelet modeling of wave propagation: Optimal finitedifference stencil design: Mathematical and Computer Modelling, 19(1), 31–38. doi: 10.1016/0895- 7177(94): 90113–9

    Article  Google Scholar 

  • Smith, J. O., 2010, Physical audio signal processing, W3K Publishing.

    Google Scholar 

  • Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49(8), 1259–1266.

    Article  Google Scholar 

  • Wang, Z. Y., Liu, H., Tang, X. D., et al., 2015, Optimized finite-difference operators based on Chebyshev autoconvolution combined window function: Chinese J. Geophysics. (in Chinese), 58(2), 628–642. doi:10.6038/ cjg20150224

    Google Scholar 

  • Yong, P., Huang, J., Li, Z., et al., 2016, Optimized equivalent staggered-grid FDmethod for time-space domain seismic modeling: Chinese J. Geophysics. (in Chinese), 59(11), 4223–4233.

    Google Scholar 

  • Yong, P., Huang, J., Li, Z., et al., 2017, Optimized equivalent staggered-grid FDmethod for elastic wave modelling based on plane wave solutions [J]: Geophysical Journal International, 208(2), 1157–1172.

    Article  Google Scholar 

  • Zheng, W. Q., Meng, X. H., Liu, J. H., et al., 2016, High precision elastic wave equation forward modeling based on cosine modulated Chebyshev window function: Chinese J. Geophysics. (in Chinese), 59(7), 2650–2662. doi:10.6038/cjgy20160728

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank all the reviewers and editors. We also give thanks to Seismic Wave Propagation and Imaging (SWPI) for supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ping Huang.

Additional information

This work was jointly supported by the NSF (No. 41720104006), the Strategic Priority Research Program of the Chinese Academy of Sciences (A) (No. XDA14010303), the National Oil and Gas Project (Nos. 2016ZX05002-005-007HZ and 2016ZX05014-001-008HZ), the Shandong Innovation Project (No. 2017CXGC1602), and the Qingdao Innovation Project (Nos. 16-5-1-40-jch and 17CX05011).

Ren Ying-Jun is a graduate student at China University of Petroleum (East China). His research interests are seismic forward modeling and full-waveform inversion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, YJ., Huang, JP., Yong, P. et al. Optimized staggered-grid finite-difference operators using window functions. Appl. Geophys. 15, 253–260 (2018). https://doi.org/10.1007/s11770-018-0668-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-018-0668-7

Keywords

Navigation