Skip to main content
Log in

Diffraction separation by plane-wave prediction filtering

  • Signal processing/denoising
  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

Seismic data processing typically deals with seismic wave reflections and neglects wave diffraction that affect the resolution. As a general rule, wave diffractions are treated as noise in seismic data processing. However, wave diffractions generally originate from geological structures, such as fractures, karst caves, and faults. The wave diffraction energy is much weaker than that of the reflections. Therefore, even if wave diffractions can be traced back to their origin, their energy is masked by that of the reflections. Separating and imaging diffractions and reflections can improve the imaging accuracy of diffractive targets. Based on the geometrical differences between reflections and diffractions on the plane-wave record; that is, reflections are quasi-linear and diffractions are quasi-hyperbolic, we use plane-wave prediction filtering to separate the wave diffractions. First, we estimate the local slope of the seismic event using planewave destruction filtering and, then, we predict and extract the wave reflections based on the local slope. Thus, we obtain the diffracted wavefield by directly subtracting the reflected wavefield from the entire wavefield. Finally, we image the diffracted wavefield and obtain high-resolution diffractive target results. 2D SEG salt model data suggest that the plane-wave prediction filtering eliminates the phase reversal in the plane-wave destruction filtering and maintains the original wavefield phase, improving the accuracy of imaging heterogeneous objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bansal, R., and Imhof, M. G., 2005, Diffraction enhancement in prestack seismic data: Geophysics, 70(3), V73–V79.

    Article  Google Scholar 

  • Burnett, W. A., Klokov, A., Fomel, S., et al., 2015, Seismic diffraction interpretation at Piceance Creek: Interpretation, 3(1), SF1–SF14.

    Article  Google Scholar 

  • Cheng, J. B., Wang, H. Z., and Ma, Z. T., 2001, Prestack depth migration with finite-difference method in frequency-space domain: Chinese Journal of Geophysics, 4(3), 389–395.

    Google Scholar 

  • Decker, L., and Klokov, A., 2014, Diffraction extraction by plane-wave destruction of partial images: 84th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 3862–3867.

    Google Scholar 

  • Decker, L., and Fomel, S., 2013, Comparison of seismic diffraction imaging techniques: plane wave destruction versus apex destruction: 83th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 4054–4059.

    Google Scholar 

  • Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics, 67(6), 1946–1960.

    Article  Google Scholar 

  • Fomel, S., 2010, Predictive painting of 3-D seismic volumes: Geophysics, 75(4), A25–A30.

    Article  Google Scholar 

  • Fomel, S., Landa, E., and Taner, M. T., 2007, Poststack velocity analysis by separation and imaging of seismic diffractions: Geophysics, 72(6), U89–U94

    Article  Google Scholar 

  • Khaidukov, V., Landa, E., and Moser, T. J., 2004, Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution: Geophysics, 69(6), 1478–1490.

    Article  Google Scholar 

  • Klokov, A., Baina, R., and Landa, E., 2010a, Separation and imaging of seismic diffractions in dip angle domain: 72th EAGE Conference and Exhibition, Extended Abstracts, G40.

    Google Scholar 

  • Klokov, A., Baina, R., Landa, E., et al., 2010b, Diffraction imaging for fracture detection: synthetic case study: 80th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 3354–3358.

    Google Scholar 

  • Klokov, A., and Sergey, F., 2012, Separation and imaging of seismic diffractions using migrated dip-angle gathers: Geophysics, 77(6), S131–143.

    Article  Google Scholar 

  • Landa, E., Fomel, S., and Reshef, M., 2008, Separation, imaging, and velocity analysis of seismic diffractions using migrated dip-angle gathers: 78th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 2176–2180.

    Google Scholar 

  • Landa, E., and Keydar, S., 1998, Seismic monitoring of diffraction images for detection of local heterogeneities: Geophysics, 63(3), 1093–1100.

    Article  Google Scholar 

  • Landa, E., Shtivelman, V., and Gelchinsky, B., 1987, A method for detection of diffracted waves on commonoffset sections: Geophysical Prospecting, 35(4), 359–373.

    Article  Google Scholar 

  • Li, J. Y. and Chen, X. H., 2013, A rock-physical modeling method for carbonate reservoirs at seismic scale: Applied Geophysics, 10(1), 1–13.

    Article  Google Scholar 

  • Li, S. J., Shao, Y., and Chen, X. Q., 2016, Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs: Applied Geophysics, 13(1), 166–178.

    Article  Google Scholar 

  • Liu, Y., Fomel, S., and Liu, G. C., 2010, Nonlinear structure-enhancing filtering using plane-wave prediction: Geophysical Prospecting, 58(3), 425–427.

    Article  Google Scholar 

  • Merzlikin, D., Fomel, S., and Bona, A., 2016, Diffraction imaging using azimuthal plane-wave destruction: 86th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 4288–4293.

    Google Scholar 

  • Moser, T., and Howard, B. C., 2008, Diffraction imaging in depth: Geophysical Prospecting, 56(5), 627–641.

    Article  Google Scholar 

  • Reshef, M., 2008, Interval velocity analysis in the dip-angle domain: Geophysics, 73(5), VE353–VE360.

    Article  Google Scholar 

  • Reshef, M., and Landa, E., 2009, Post-stack velocity analysis in the dip-angle domain using diffractions: Geophysical Prospecting, 57(5), 811–821.

    Article  Google Scholar 

  • Reshef, M., and Rüger, A., 2008, Influence of structural dip angles on interval velocity analysis: Geophysics, 73(4), U13–U18.

    Article  Google Scholar 

  • Taner, M. T., Fomel, S., and Landa, E., 2006, Separation and imaging of seismic diffractions using plane-wave decomposition: 76th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, 2401–2405.

    Google Scholar 

  • Tyiasning, S., Merzlikin, D., Cooke, D., et al., 2016, A comparison of diffraction imaging to incoherence and curvature: The Leading Edge, 35(1), 86–89.

    Article  Google Scholar 

  • Wang, D. Y., Huang, J. P., Kong, X., et al., 2017, Improving the resolution of seismic traces based on the secondary time-frequency spectrum: Applied Geophysics, 14(2), 236–246.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the seismic wave propagation and imaging research group at the Department of Geophysics, China University of Petroleum (East China) for their support. We also thank the reviewers for constructive criticism as well as the chief editor Fan Wei-Cui.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Kong.

Additional information

This research was funded jointly by the National Natural Science Foundation of China (No. 41104069), the National Key Basic Research Program of China (973 Program: 2011CB202402), the Shandong University Science and Technology Planning Project (No. J17KA197), and the College of Petroleum Engineering in Shengli College China University of Petroleum “Chunhui Project” (No. KY2015003).

Kong Xue is a lecturer at the College of Petroleum Engineering in Shengli College, China University of Petroleum. She received her Ph.D. in Geological Resources and Geological Engineering from China University of Petroleum (East China) in 2012. Her research interests mainly include seismic data processing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Wang, DY., Li, ZC. et al. Diffraction separation by plane-wave prediction filtering. Appl. Geophys. 14, 399–405 (2017). https://doi.org/10.1007/s11770-017-0634-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-017-0634-9

Keywords

Navigation