Skip to main content
Log in

Normalized edge detection, and the horizontal extent and depth of geophysical anomalies

  • Published:
Applied Geophysics Aims and scope Submit manuscript

Abstract

Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies. Large deviations between model and true edges are common because of the interference of depth and errors in computing the derivatives; thus, edge detection methods cannot provide information about the depth of the source. To simultaneously obtain the horizontal extent and depth of geophysical anomalies, we use normalized edge detection filters, which normalize the edge detection function at different depths, and the maxima that correspond to the location of the source. The errors between model and actual edges are minimized as the depth of the source decreases and the normalized edge detection method recognizes the extent of the source based on the maxima, allowing for reliable model results. We demonstrate the applicability of the normalized edge detection filters in defining the horizontal extent and depth using synthetic and actual aeromagnetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelrahman, E. M., 1990, Discussion on “A leastsquares approach to depth determination from gravity data” by O.P. Gupta: Geophysics, 55, 376–378.

    Article  Google Scholar 

  • Aydin, A., 1997, Evaluation of Gravity Data in Terms of Hydrocarbon by Normalized Full Gradient, Variation, and Statistic Methods, Model Studies and Application in Hasankale-Horasan Basin (Erzurum): Ph.D. Thesis, Karadeniz Technical Univ., Natural and Applied Sciences Institute, Trabzon, Turkey.

    Google Scholar 

  • Aydin, A., 2005. Evaluation of Gravity Anomalies by Direct Interpretation Techniques: An Application from Hasankale-Horasan Region: Journal of Engineering Sciences, 11(1), 95–102.

    Google Scholar 

  • Aydin, A., 2007, Interpretation of gravity anomalies with the normalized full gradient (NFG) method and an example: Pure and Applied Geophysics, 164(11), 2329–2344.

    Article  Google Scholar 

  • Berezkin, V.M., 1967, Application of the total vertical gradient of gravity for determination of the depths to the sources of gravity anomalies: Exploration Geophysics, 18, 69–79.

    Google Scholar 

  • Blakely, R. J., 1995. Potential theory in gravity and magnetic applications: Cambridge University Press.

    Book  Google Scholar 

  • Cordell, L., 1979, Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin, New Mexico. New Mexico Geol. Soc. Guidebook, 30th Field Conf., 59–64.

    Google Scholar 

  • Cordell. L, and Grauch, V. J. S., 1985, Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico, in Hinzc. W. J. Ed., The utility of regional gravity and magnetic anomaly: Society of Exploration Geophysicists, 181–197.

    Chapter  Google Scholar 

  • Cooper, G. R. J., and Cowan, D. R.. 2006, Enhancing potential field data using filters based on the local phase: Computers & Geosciences, 32(10), 1585–1591.

    Article  Google Scholar 

  • Cooper, G. R. J., and Cowan, D. R., 2008, Edge enhancement of potential field data using normalized statistics: Geophysics, 73(3), H1–H4.

    Article  Google Scholar 

  • Cooper, G. R. J., 2009, Balancing images of potential field data: Geophysics, 74(3), L17–L20.

    Article  Google Scholar 

  • Elawadi, E., Salem, A., and Ushijima, K., 2001, Detection of cavities and tunnels from gravity data using a neural network: Exploration Geophysics, 32(4), 204–208.

    Article  Google Scholar 

  • Even, H. M., 1936, The place of the vertical gradient in gravitational interpretations: Geophysics, 1(1), 127–136.

    Article  Google Scholar 

  • Gao, F.H., Wang, F., and Cao, H.H., 2010, Zircon U-Pb Age of the Basement Granite from Suibin Depression in Sanjiang Basin and Its Tectonic Implications: Journal of Jilin University (Earth Science Edition), 40(4), 869–878.

    Google Scholar 

  • Griffin, W.R., 1949, Residual gravity in theory and practice: Geophysics. 14(1), 39–56.

    Article  Google Scholar 

  • Ma, G.Q., Liu, C., Huang, D.N., et al., 2013, A stable iterative downward continuation of potential field data: Journal of Applied Geophysics, 98, 205–211.

    Article  Google Scholar 

  • Hartman, R. R., Teskey, D. J., and Friedberg, J. L., 1971, A system for rapid digital aeromagnetic interpretation: Geophysics, 36(5), 891–918.

    Article  Google Scholar 

  • Hood. P. J., and Tasked, D. J., 1989, Aeromagnetic gradiometer program of the Geological Survey of Canada: Geophysics, 54(8), 1012–1022.

    Article  Google Scholar 

  • Hsu, S., Sibuet, J. C., and Shyu, C., 1996, Highresolution detection of geologic boundaries from potential field anomalies: an enhanced analytic signal technique: Geophysics, 61(2), 373–386.

    Article  Google Scholar 

  • Miller, H.G., and Singh, V., 1994, Potential field tilt—a new concept for location of potential field sources: Journal of Applied Geophysics, 32(2–3), 213–217.

    Article  Google Scholar 

  • Ma, G.Q., Huang, D.N., Yu, P., et al., Huang Da-Nian, Yu, Ping et al., 2012, Application of improved balancing filters to edge identification of potential field data: Chinese J.Geophys., 55(12),4288–4295.

    Google Scholar 

  • Ma, G.Q., 2013, Edge detection of potential field data using improved local phase filter: Exploration Geophysics, 44(1), 36–41.

    Article  Google Scholar 

  • Nabighian, M. N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal crosssection: its properties and use for automated anomaly interpretation: Geophysics, 37(3), 507–517.

    Article  Google Scholar 

  • Rajagopalan, S., and Milliganm P., 1995, Image enhancement of aeromagnetic data using automatic gain control: Exploration Geophysics, 25(4), 173–178.

    Article  Google Scholar 

  • Reid, A. B, Allsop, J. M., Granser, H, et al. 1990, Magnetic interpretation in three dimensions using Euler deconvolution: Geophysics, 55(1), 80–91.

    Article  Google Scholar 

  • Roest, W. R., Verhoef, J., and Pilkington, M., 1992, Magnetic interpretation using the 3-D analytic signal: Geophysics, 57(1), 116–125.

    Article  Google Scholar 

  • Salem, A., Ravat, D., Mushayandebvu, M. F., et al. 2004, Linearized least-squares method for interpretation of potential field data from sources of simple geometry: Geophysics, 69(3), 783–788.

    Article  Google Scholar 

  • Thompson, D. T., 1982, “EULDPH”—A new technique for making computer-assisted depth estimates from magnetic data: Geophysics, 47(1), 31–37.

    Article  Google Scholar 

  • Thurston, J. B., and Smith, R. S., 1997, Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI method: Geophysics, 62(3), 807–813.

    Article  Google Scholar 

  • Verduzco, B., Fairhead, J. D., and Green, C. M., 2004, New insights into magnetic derivatives for structural mapping: The Leading Edge, 23(2), 116–119.

    Article  Google Scholar 

  • Wang, W.Y., Pan, Y., and Qiu, Z.Y., 2009, A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data: Applied Geophysics, 6(3), 226–233

    Article  Google Scholar 

  • Wang, W.Y., 2010, Spatial variation law of the extreme value positions of total horizontal derivative for potential field data. Chinese Journal of Geophysics, 53(9), 2257–2270.

    Google Scholar 

  • Wang, W.Y., Zhang, G.C., and Liang, J.S., 2010, Spatial variation law of vertical derivative zero points for potential field data: Applied Geophysics, 7(3), 197–209.

    Article  Google Scholar 

  • Wijns C, Perez C, Kowalczyk P., 2005, Theta map: edge detection in magnetic data: Geophysics, 70(4), 39–43.

    Article  Google Scholar 

  • Xiao, P.F., Li, M., and Xu, S.Z., 2006, Stable solution of normalized total gravity gradient: Oil Geophysics Prospecting, 41(5), 596–600.

    Google Scholar 

  • Zeng, H., Meng, X., and Yao, C., 2002. Detection of reservoirs from normalized full gradient of gravity anomalies and its application to Shengli Oil Field, East China: Geophysics, 67(4), 1138–1147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Li Li.

Additional information

This research was financially supported by the China Postdoctoral Science Foundation (No.2014M551188) and the Deep Exploration in China Sinoprobe-09-01 (No.201011078)

Li Li-Li, lecturer, graduated from Jilin University in 2013 with a PhD in Solid Geophysics. Her research interests include the processing and interpretation of geophysical data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LL., Han, LG. & Huang, DN. Normalized edge detection, and the horizontal extent and depth of geophysical anomalies. Appl. Geophys. 11, 149–157 (2014). https://doi.org/10.1007/s11770-014-0436-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11770-014-0436-2

Keywords

Navigation