Skip to main content
Log in

Spatial and Temporal Changes of Arable Land Driven by Urbanization and Ecological Restoration in China

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Since the industrial revolution, human activities have both expanded and intensified across the globe resulting in accelerated land use change. Land use change driven by China’s development has put pressure on the limited arable land resources, which has affected grain production. Competing land use interests are a potential threat to food security in China. Therefore, studying arable land use changes is critical for ensuring future food security and maintaining the sustainable development of arable land. Based on data from several major sources, we analyzed the spatio-temporal differences of arable land among different agricultural regions in China from 2000 to 2010 and identified the drivers of arable land expansion and loss. The results revealed that arable land decreased by 5.92 million ha or 3.31%. Arable land increased in the north and decreased in the south of China. Urbanization and ecological restoration programs were the main drivers of arable land loss, while the reclamation of other land cover types (e.g., forest, grassland, and wetland) was the primary source of the increased arable land. The majority of arable land expansion occurred in the Northwest, but the centroid for grain production moved to northeast, which indicated that new arable land was of poor quality and did not significantly contribute to the grain production capacity. When combined with the current ‘Red Line of Arable Land Policy’ (RAL) and ‘Ecological Redline Policy’ (EPR), this study can provide effective information for arable land policymaking and help guide the sustainable development of arable land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai Y, Jiang B, Wang M et al., 2016. New ecological redline policy (ERP) to secure ecosystem services in China. Land Use Policy, 55(798): 348–351. doi: 10.1016/j.landusepol.2015. 09.002

    Google Scholar 

  • Baldos U, Hertel T W, 2015. The role of international trade in managing food security risks from climate change. Food Security, 7(2): 275–290. doi: 10.1007/s12571-015-0435-z

    Google Scholar 

  • Berry D, 1978. Effects of urbanization on agricultural activities. Growth and Change, 9(3): 2–8. doi:10.1111/j.1468-2257. 1978.tb01024.x

    Google Scholar 

  • Brown L R, 1995. Who Will Feed China? Wake-up Call for a Small Planet. London England Earthscan Publications.

    Google Scholar 

  • Bruinsma J, 2009. By how much do land, water and crop yields need to increase by 2050? Expert meeting on ‘How to Feed the World in 2050’.

    Google Scholar 

  • Cao Yingui, Yuan Chun, Zhou Wei et al., 2008. Analysis on driving forces and provincial differences of cultivated land change in China. China Land Science, 22(2): 17–22. (in Chinese)

    Google Scholar 

  • Chen M, Liu W, Lu D, 2016. Challenges and the way forward in China’s new-type urbanization. Land Use Policy, 55(55): 334–339. doi: org/10.1016/j.landusepol.2015.07.025

    Google Scholar 

  • Chen Yuqi, Li Xiubin, Wang Jing, 2011. Changes and effecting factors of grain production in China. Chinese Geographical Science, 21(6): 676–684. doi: 10.1007/s11769-011-0506-9

    Google Scholar 

  • Cui X, Wang X, 2015. Urban land use change and its effect on social metabolism: an empirical study in Shanghai. Habitat International, 49: 251–259. doi: org/10.1016/j.habitatint.2015. 05.018

    Google Scholar 

  • Delzeit R, Zabel F, Meyer C et al., 2017. Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Regional Environmental Change, 17(5): 1429–1441. doi: 10.1007/s10113-016-0927-1

    Google Scholar 

  • Deng J, Wang K, Hong Y et al., 2009. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and urban planning, 92(3–4): 187–198. doi: org/10.1016/j.landurbplan.2009.05.001

    Google Scholar 

  • Deng X, Huang J, Rozelle S et al., 2006. Cultivated land conversion and potential agricultural productivity in China. Land Use Policy, 23(4): 372–384. doi: org/10.1016/j.landusepol.2005.07.003

    Google Scholar 

  • Deng X, Huang J, Rozelle S et al., 2015. Impact of urbanization on cultivated land changes in China. Land Use Policy, 45(45): 1–7. doi: org/10.1016/j.landusepol.2015.01.007

    Google Scholar 

  • Feng Z, Yang Y, Zhang Y et al., 2005. Grain-for-green policy and its impacts on grain supply in West China. Land Use Policy, 22(4): 301–312. doi: org/10.1016/j.landusepol.2004.05.004

    Google Scholar 

  • Grafton R Q, Daugbjerg C, Qureshi M E, 2015. Towards food security by 2050. Food Security, 7(2): 179–183. doi: 10. 1007/s12571-015-0445-x

    Google Scholar 

  • Guan D, Li H, Inohae T et al., 2011. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222(20): 3761–3772. doi: org/ 10.1016/j.ecolmodel.2011.09.009

    Google Scholar 

  • Grau H R, Gasparri N I, Aide T M, 2008. Balancing food production and nature conservation in the Neotropical dry forests of northern Argentina. Global Change Biology, 14(5): 985–997. doi: 10.1111/j.1365-2486.2008.01554.x

    Google Scholar 

  • He Q, Bertness M D, Bruno J et al., 2014. Pennings SC. Economic development and coastal ecosystem change in China. Scientific Reports, 4: 5995. doi: 10.1038/srep05995

    Google Scholar 

  • Jiang P, Cheng Q, Zhuang Z et al., 2018. The dynamic mechanism of landscape structure change of arable landscape system in China. Agriculture, Ecosystems & Environment, 251: 26–36. doi: org/10.1016/j.agee.2017.09.006

    Google Scholar 

  • Kastner T, Rivas M J I, Koch W et al., 2012. Global changes in diets and the consequences for land requirements for food. Proceedings of the National Academy of Sciences, 109(18): 6868–6872. doi: 10.1073/pnas.1117054109

    Google Scholar 

  • Kompas T, Nguyen H T M, Van Ha P, 2015. Food and biosecu-rity: livestock production and towards a world free of foot-and-mouth disease. Food Security, 7(2): 291–302. doi: 10.1007/s12571-015-0436-y

    Google Scholar 

  • Kuang W, Liu J, Dong J et al., 2016. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: a clud-based analysis of their trajectories, patterns, and drivers. Landscape and Urban Planning, 145(145): 21–33. doi: org/10.1016/j.landurbplan.2015.10.001

    Google Scholar 

  • Lam H, Remais J, Fung M et al., 2013. Food supply and food safety issues in China. Lancet, 381(9882): 2044–2053. doi: org/10.1016/S0140-6736(13)60776-X

    Google Scholar 

  • Larson C, 2013. Losing arable land, China faces stark choice: adapt or go hungry. Science, 339(6120): 644–645. doi: 10. 1126/science.339.6120.644

    Google Scholar 

  • Lei D, Shangguan Z, Rui L, 2012. Effects of the grain-for-green program on soil erosion in China. International Journal of Sediment Research, 27(1): 120–127. doi: org/10.1016/S1001-6279(12)60021-3

    Google Scholar 

  • Lichtenberg E, Ding C, 2008. Assessing farmland protection policy in China. Land Use Policy, 25(1): 59–68. doi: org/10.1016/ j.landusepol.2006.01.005

    Google Scholar 

  • Li J, Feldman M W, Li S et al., 2011. Rural household income and inequality under the Sloping Land Conversion Program in western China. Proceedings of the National Academy of Sciences, 108(19): 7721–7726. doi: 10.1073/pnas.1101018108

    Google Scholar 

  • Li W, Feng T, Hao J, 2009. The evolving concepts of land administration in China: Cultivated land protection perspective. Land Use Policy, 26(2): 262–272. doi: org/10.1016/j. landusepol.2008.02.008

    Google Scholar 

  • Liu J, 2014. Forest sustainability in China and implications for a telecoupled world. Asia & the Pacific Policy Studies, 1(1): 230–250. doi: 10.1002/app5.17

    Google Scholar 

  • Liu J, Hull V, Yang W et al., 2016. Pandas and People: Coupling Human and Natural Systems for Sustainability. United States of America: Oxford University Press.

    Google Scholar 

  • Liu X, Wang J, Liu M et al., 2005. Spatial heterogeneity of the driving forces of cropland change in China. Science in China Series D: Earth Sciences, 48(12): 2231–2240. doi: 10.1360/ 04yd0195

    Google Scholar 

  • Liu Y, Fang F, Li Y, 2014. Key issues of land use in China and implications for policy making. Land Use Policy, 40(40): 6–12. doi: org/10.1016/j.landusepol.2013.03.013

    Google Scholar 

  • Long H, Li Y, Liu Y et al., 2012. Accelerated restructuring in rural China fueled by ‘increasing vs. decreasing balance’ land-use policy for dealing with hollowed villages. Land Use Policy, 29(1): 11–22. doi: org/10.1016/j.landusepol.2011.04.003

    Google Scholar 

  • Lu Z, Deng X, 2011. China’s western development strategy: policies, effects and prospects. Available at: https://mpra.ub.uni-muenchen.de/35201/

    Google Scholar 

  • Ma Z, Melville D S, Liu J et al., 2014. Rethinking China’s new great wall. Science, 346(6212): 912–914. doi:10.1126/science. 1257258

    Google Scholar 

  • Nath R, Luan Y, Yang W et al., 2015. Changes in arable land demand for food in India and China: a potential threat to food security. Sustainability, 7(5): 5371–5397. doi:10.3390/su 7055371

    Google Scholar 

  • Ouyang Z, Zheng H, Xiao Y et al., 2016. Improvements in ecosystem services from investments in natural capital. Science, 352(6292): 1455–1459. doi: 10.1126/science.aaf2295

    Google Scholar 

  • Peng J, Liu Y, Li T et al., 2017a. Regional ecosystem health response to rural land use change: a case study in Lijiang City, China. Ecological Indicators, 72: 399–410. doi: org/10.1016/ j.ecolind.2016.08.024

    Google Scholar 

  • Peng J, Zhao M, Guo X et al., 2017b. Spatial-temporal dynamics and associated driving forces of urban ecological land: a case study in Shenzhen city, China. Habitat International, 60: 81–90. doi: org/10.1016/j.habitatint.2016.12.005

    Google Scholar 

  • Rao E, Ouyang Z, Yu X et al., 2014. Spatial patterns and impacts of soil conservation service in China. Geomorphology, 207(1): 64–70. doi: org/10.1016/j.geomorph.2013.10.027

    Google Scholar 

  • Rao Enming, Xiao Yi, Ouyang Zhiyun et al., 2016. Changes in ecosystem service of soil conservation between 2000 and 2010 and its driving factors in southwestern China. Chinese Geographical Science, 26: 165–173. doi: 10.1007/s11769-015-0759-9

    Google Scholar 

  • Roberts L, 2011. 9 Billion? Science, 333(6042): 50–543. doi: 10.1126/science.333.6042.540

    Google Scholar 

  • Sun J, Tong Y, Liu J, 2017. Telecoupled land-use changes in distant countries. Journal of Integrative Agriculture, 16(2): 368–376. doi: org/10.1016/S2095-3119(16)61528-9

    Google Scholar 

  • Sun J, Wu W, Tang H et al., 2015. Spatiotemporal patterns of non–genetically modified crops in the era of expansion of genetically modified food. Scientific Reports, 5:14180. doi: 10.1038/srep14180

    Google Scholar 

  • Tan M, Li X, Xie H et al., 2005. Urban land expansion and arable land loss in China: a case study of Beijing-Tianjin-Hebei region. Land Use Policy, 22(3): 187–196. doi: org/10.1016/j. landusepol.2004.03.003

    Google Scholar 

  • Tian G, Qiao Z, 2014. Assessing the impact of the urbanization process on net primary productivity in China in 1989–2000. Environmental Pollution, 184: 320–326. doi: org/10.1016/j. envpol.2013.09.012

    Google Scholar 

  • Tilman D, Balzer C, Hill J et al., 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50): 20260–20264. doi: 10.1073/pnas.1116437108

    Google Scholar 

  • Tuanmu M N, Vina A, Yang W et al., 2016. Effects of payments for ecosystem services on wildlife habitat recovery. Conservation Biology, 30(4): 827–835. doi: 10.1111/cobi.12669

    Google Scholar 

  • United Nations. 2013. ‘World Population Prospects: The 2012 Revision, Volume II: Demographic Profiles, United Nations Department of Economic and Social Affairs, Population Division’. World Population Prospects: The 2012 Revision.

    Google Scholar 

  • Viña A, McConnell W J, Yang H et al., 2016. Effects of conservation policy on China’s forest recovery. Science Advances, 2(3): e1500965. doi: 10.1126/sciadv.1500965

    Google Scholar 

  • Wang J, Peng J, Zha M et al., 2017. Significant trade-off for the impact of Grain-for-Green Programme on ecosystem services in North-western Yunnan, China. Science of the To t a l Environment, 574: 57–64. doi:org/10.1016/j.scitotenv.2016.09.026

    Google Scholar 

  • Wang Liyan, Xiao Yi, Rao Enming et al., 2015. Spatial characteristics of food provision service and its impact factors in China. Journal of Natural Resources, 30(2):189–193. (in Chinese)

    Google Scholar 

  • Wang Wengang, Pang Xiaoxiao, Song Yuxiang et al., 2012. The spatial different features of construction land changes in China. Areal Research and Development, 31(1): 110–115. (in Chinese)

    Google Scholar 

  • Wen Jiabao, 2011. Report on the Work of the Government. Proceedings of the Delivered at the Fourth Session of the Eleventh National People’s Congress, Beijing, 5th March. (in Chinese)

    Google Scholar 

  • Xu Z, Xu J, Deng X et al., 2006. Grain for Green and Grain: a case study of the conflict between food security and the environment in China. World Development, 34(1): 130–148

    Google Scholar 

  • Yang Bangjie, Gao Jixi, Zou Changxin, 2014. The strategic significance of drawing the ecological protection red line. China Development, 14:1–4. (in Chinese).

    Google Scholar 

  • Yang, H, Li X, 2000. Cultivated land and food supply in China. Land Use Policy, 17(2): 73–88. doi: org/10.1016/S0264-8377 (00)00008-9

    Google Scholar 

  • Zhang C, Robinson D, Wang J et al., 2011. Factors influencing farmers’ willingness to participate in the conversion of cultivated land to wetland program in Sanjiang National Nature Reserve, China. Environmental management, 47(1): 107–120. doi: 10.1007/s00267-010-9586-z

    Google Scholar 

  • Zhou H, Van R A, 2009. Detecting the impact of the ‘Grain for Green’ program on the mean annual vegetation cover in the Shaanxi Province, China using SPOT-VGT NDVI data. Land Use Policy, 26(4): 954–960. doi: org/10.1016/j.landusepol. 2008.11.006

    Google Scholar 

  • Zhou Lisan, Sun Han, Shen Yuqing, 1981. China’s comprehensive agricultural regionalization. Beijing: Agricultural Publishing House, 7: 2–9. (in Chinese)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Institute of Remote Sensing Applications, Chinese Academy of Sciences (CAS) that kindly provided the mapped data to definite the distribution of arable land.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyun Ouyang.

Additional information

Foundation item: under the auspices of Chinese Academy of Science Services Network Program (No. KFJ-STS-ZDTP-010), Michigan AgBio Research Program

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Anna, H., Zhang, L. et al. Spatial and Temporal Changes of Arable Land Driven by Urbanization and Ecological Restoration in China. Chin. Geogr. Sci. 29, 809–819 (2019). https://doi.org/10.1007/s11769-018-0983-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-018-0983-1

Keywords

Navigation