Skip to main content
Log in

Distributed robust matrix-scaled consensus control of perturbed multi-agent systems

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

Distributed matrix-scaled consensus is a kind of generalized cooperative control problem and has broad applications in the field of social network and engineering. This paper addresses the robust distributed matrix-scaled consensus of perturbed multi-agent systems suffering from unknown disturbances. Distributed discontinuous protocols are first proposed to drive agents to achieve cluster consensus and suppress the effect of disturbances. Adaptive protocols with time-varying gains obeying differential equations are also designed, which are completely distributed and rely on no global information. Using the boundary layer technique, smooth protocols are proposed to avoid the unexpected chattering effect due to discontinuous functions. As a cost, under the designed smooth protocols, the defined matrix-scaled consensus error tends to a residual set rather than zero, in which the residual bound is arbitrary small by choosing proper parameters. Moreover, distributed dynamic event-based matrix-scalar consensus controllers are also proposed to avoid continuous communications. Simulation examples are provided to further verify the designed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No new data were generated or analysed in support of this research.

References

  1. Zhang, C., Qin, J., Li, H., Wang, Y., Wang, S., & Zheng, W. (2022). Consensus-based distributed two-target tracking over wireless sensor networks. Automatica, 146, 110593.

    Article  MathSciNet  Google Scholar 

  2. Lee, T. C., Tan, Y., & Mareels, I. (2022). Limiting behavior of hybrid time-varying systems. IEEE Transactions on Automatic Control., 67(11), 5777–5792.

    Article  MathSciNet  Google Scholar 

  3. Li, H., Zhang, X., & Pan, W. (2022). Consensus control of feedforward nonlinear multi-agent systems: a time-varying gain method. Control Theory and Technology, 20, 46–53. https://doi.org/10.1007/s11768-022-00083-1

    Article  MathSciNet  Google Scholar 

  4. Huang, N., Sun, Z., Anderson, B., & Duan, Z. (2020). Distributed and adaptive triggering control for networked agents with linear dynamics. Information Sciences, 517, 297–314.

    Article  MathSciNet  Google Scholar 

  5. Lv, Y., Li, Z., Duan, Z., & Chen, J. (2016). Distributed adaptive output feedback consensus protocols for linear systems on directed graphs with a leader of bounded input. Automatica, 74, 308–314.

    Article  MathSciNet  Google Scholar 

  6. Yang, D., Ren, W., Liu, X., & Chen, W. (2016). Decentralized event-triggered consensus for linear multi-agent systems under general directed graphs. Automatica, 69, 242–249.

    Article  MathSciNet  Google Scholar 

  7. Lv, Y., Li, Z., Duan, Z., & Feng, G. (2017). Novel distributed robust adaptive consensus protocols for linear multi-agent systems with directed graphs and external disturbances. International Journal of Control, 90(2), 137–147.

    Article  MathSciNet  Google Scholar 

  8. Su, Y., & Huang, J. (2012). Cooperative output regulation of linear multi-agent systems. IEEE Transactions on Automatic Control, 57(4), 1062–1066.

    Article  MathSciNet  Google Scholar 

  9. Liu, G., Liang, H., Pan, Y., & Ahn, C. K. (2023). Antagonistic interaction-based bipartite consensus control for heterogeneous networked systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(1), 71–81.

    Article  Google Scholar 

  10. Cheng, B., Lv, Y., & Li, Z. (2021). Novel adaptive dynamic event-triggered bipartite consensus protocols with intermittent updating and interaction. In 2021 China Automation Congress (CAC) (pp. 7789–7794).

  11. Liu, M., Wang, X., & Li, Z. (2020). Robust bipartite consensus and tracking control of high-order multiagent systems with matching uncertainties and antagonistic interactions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(7), 2541–2550.

    Article  Google Scholar 

  12. Zhao, H., Qi, Y., Chang, Y., & Zhang, X. (2022). Bipartite consensus for nonlinear time-delay multiagent systems via time-varying gain control method. Control Theory and Technology, 20, 504–513. https://doi.org/10.1007/s11768-022-00112-z

    Article  MathSciNet  Google Scholar 

  13. Trinh, M. H., Nguyen, C. V., Lim, Y. H., & Ahn, H. S. (2018). Matrix-weighted consensus and its applications. Automatica, 89, 415–419.

    Article  MathSciNet  Google Scholar 

  14. Trinh, M. H., Vu, D., Tran, Q., & Ahn, H. S. (2022). Matrix-scaled consensus (pp. 1–6). arXiv:2204.10723v1

  15. Miao, S., & Su, H. (2022). Bipartite consensus for second-order multiagent systems with matrix-weighted signed network. IEEE Transactions on Cybernetics, 52(12), 13038–13047.

    Article  PubMed  Google Scholar 

  16. Pan, L., Shao, H., Mesbahi, M., Li, D., & Xi, Y. (2021). Cluster consensus on matrix-weighted swithcing networks (pp. 1–11). arXiv:2107.09292v2

  17. Kwon, S. H., Bae, Y. B., Liu, J., & Ahn, H. S. (2020). From matrix-weighted consensus to multipartite average consensus. IEEE Transactions on Control of Network Systems, 7(4), 1609–1620.

  18. Long, M., Su, H., & Zeng, Z. (2022). Model-free event-triggered consensus algorithm for multiagent systems using reinforcement learning method. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(8), 5212–5221.

    Article  Google Scholar 

  19. Yu, P., Ding, L., Liu, Z., & Guan, Z. (2016). Leader-follower flocking based on distributed event-triggered hybrid control. International Journal of Robust and Nonlinear Control, 26, 143–153.

    Article  MathSciNet  Google Scholar 

  20. Cheng, Y., & Ugrinovskii, V. (2016). Event-triggered leader-following tracking control for multivariable multi-agent systems. Automatica, 70, 204–210.

    Article  MathSciNet  Google Scholar 

  21. Qi, Y., Du, C., Zhang, X., & Mu, R. (2023). Dynamic event-triggered bipartite consensus for uncertain high-order nonlinear multi-agent systems. Control Theory and Technology, 21, 222–232. https://doi.org/10.1007/s11768-022-00121-y

    Article  MathSciNet  Google Scholar 

  22. Hu, W., Liu, L., & Feng, G. (2017). Output consensus of heterogeneous linear multi-agent systems by distributed event-triggered/self-triggered strategy. IEEE Transactions on Cybernetics, 47(8), 1914–1924.

    Article  Google Scholar 

  23. Xing, L., Wen, C., Guo, F., Liu, Z., & Su, H. (2017). Event-based consensus for linear multiagent systems without continuous communication. IEEE Transactions on Cybernetics, 47(8), 2132–2142.

    Article  Google Scholar 

  24. Yu, H., & Chen, T. (2021). On Zeno behavior in event-triggered finite-time consensus of multi-agent systems. IEEE Transactions on Automatic Control, 66(10), 4700–4714.

    Article  MathSciNet  Google Scholar 

  25. Zhang, Y., Su, X., Liu, Z., & Chen, C. L. P. (2021). Event-triggered adaptive fuzzy tracking control with guaranteed transient performance for MIMO nonlinear uncertain systems. IEEE Transactions on Cybernetics, 51(2), 736–749.

    Article  PubMed  Google Scholar 

  26. Yao, D., Li, H., Lu, R., & Shi, Y. (2020). Distributed sliding-mode tracking control of second-order nonlinear multiagent systems: An event-triggered approach. IEEE Transactions on Cybernetics, 50(9), 3892–3902.

    Article  PubMed  Google Scholar 

  27. Yang, R., Liu, L., & Feng, G. (2022). Leader-following output consensus of heterogeneous uncertain linear multiagent systems with dynamic event-triggered strategy. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(3), 1626–1637.

    Article  Google Scholar 

  28. Cheng, B., & Li, Z. (2019). Fully distributed event-triggered protocols for linear multi-agent networks. IEEE Transactions on Automatic Control, 64(4), 1655–1662.

    Article  MathSciNet  Google Scholar 

  29. Li, X., Tang, Y., & Karimi, H. (2020). Consensus of multi-agent systems via fully distributed event-triggered control. Automatica, 116, 108898.

    Article  MathSciNet  Google Scholar 

  30. Cheng, B., & Li, Z. (2019). Coordinated tracking control with asynchronous edge-based event-triggered communications. IEEE Transactions on Automatic Control, 64(10), 4321–4328.

    Article  MathSciNet  Google Scholar 

  31. Li, X., Sun, Z., Tang, Y., & Karimi, H. (2021). Adaptive event-triggered consensus of multi-agent systems on directed graphs. IEEE Transactions on Automatic Control, 66(4), 1670–1685.

    Article  MathSciNet  Google Scholar 

  32. Cheng, B., Lv, Y., Li, Z., & Duan, Z. (2024). Discrete communication and control updating in event-triggered consensus. IEEE Transactions on Automatic Control, 69(1), 347–354.

    Article  MathSciNet  Google Scholar 

  33. Pan, L., Shao, H., Li, Y., Li, D., & Xi, Y. (2021). Event-triggered consensus of matrix-weighted networks subject to actuator saturation. arXiv:2110.13356v1

  34. Pan, L., Shao, H., Li, Y., Li, D., & Xi, Y. (2021). Dynamic event-triggered consensus of multi-agent systems on matrix-weighted networks. arXiv:2106.06198v1

  35. Cheng, B., & Li, Z. (2019). Consensus disturbance rejection with event-triggered communications. Journal of the Franklin Institute, 356(2), 956–974.

    Article  MathSciNet  Google Scholar 

  36. Qian, Y., Liu, L., & Feng, G. (2020). Distributed event-triggered adaptive control for consensus of linear multi-agent systems with external disturbances. IEEE Transactions on Cybernetics, 50(5), 2197–2208.

    Article  PubMed  Google Scholar 

  37. Zhang, H., & Lewis, F. L. (2012). Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatica, 48(7), 1432–1439.

    Article  MathSciNet  Google Scholar 

  38. Meng, Z., Lin, Z., & Ren, W. (2013). Robust cooperative tracking for multiple non-identical second-order nonlinear systems. Automatica, 49(8), 2363–2372.

    Article  MathSciNet  Google Scholar 

  39. Ding, Z. (2015). Consensus disturbance rejection with disturbance observers. IEEE Transactions on Industrial Electronics, 62(9), 5829–5837.

    Article  Google Scholar 

  40. Li, Z., & Chen, J. (2017). Robust consensus of linear feedback protocols over uncertain network graphs. IEEE Transactions on Automatic Control, 62(8), 4251–4258.

    Article  MathSciNet  Google Scholar 

  41. Wen, G., Wang, P., Huang, T., Yu, W., & Sun, J. (2019). Robust neuro-adaptive containment of multileader multiagent systems with uncertain dynamics. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(2), 406–417.

    Article  Google Scholar 

  42. Li, Z., Duan, Z., & Lewis, F. L. (2014). Distributed robust consensus control of multi-agent systems with heterogeneous matching uncertainties. Automatica, 50(3), 883–889.

    Article  MathSciNet  Google Scholar 

  43. Trentelman, H. L., Takaba, K., & Monshizadeh, N. (2013). Robust synchronization of uncertain linear multi-agent systems. IEEE Transactions on Automatic Control, 58(6), 1511–1523.

    Article  MathSciNet  Google Scholar 

  44. Cheng, B. & Li, G. (2023). Matrix-scaled consensus of uncertain networked systems. In Proceedings of the 42th Chinese Control Conference (pp. 5981–5985).

  45. Li, Z., & Duan, Z. (2014). Cooperative control of multi-agent systems: A consensus region approach. CRC Press.

  46. Ioannou, P., & Sun, J. (1996). Robust adaptive control. Prentice-Hall.

    Google Scholar 

  47. Young, K. D., Utkin, V. I., & Özgüner, Ü. (1999). A control engineer’s guide to sliding mode control. IEEE Transactions on Control Systems Technology, 7(3), 328–342.

    Article  Google Scholar 

  48. Bernstein, D. (2009). Matrix mathematics: Theory, facts, and formulas. Princeton University Press.

    Book  Google Scholar 

  49. Cheng, B., & Li, Z. (2019). Designing fully distributed adaptive event-triggered controllers for networked linear systems with matched uncertainties. IEEE Transactions on Neural Networks and Learning Systems, 30(12), 3645–3655.

    Article  MathSciNet  PubMed  Google Scholar 

  50. Li, Y., Wang, X., Sun, J., Wang, G., & Chen, J. (2023). Data-driven consensus control of fully distributed event-triggered multi-agent systems. Science China-Information Sciences, 66(5), 152202:1–152202:15.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Additional information

This work was supported in part by the National Key Research and Development Program of China (No. 2020AAA0108905), by the National Natural Science Foundation of China (Nos. 62103302, 62273262, 62088101), by the Shanghai Sailing Program (No. 21YF1450300), by the Shanghai Chenguang Program (No. 22CGA19), by the Shanghai Municipal Science and Technology Major Project (No. 2021SHZDZX0100), by the Shanghai Science and Technology Planning Project (Nos. 21ZR1466400, 22QA1408500), by the Shanghai Municipal Commission of Science and Technology Project (No. 19511132101), by the Fundamental Research Funds for the Central Universities (No. 2022-5-YB-05), by the Industry, Education and Research Innovation Foundation of Chinese University (Nos. 2021ZYA02008, 2021ZYA03004), and by the Special Fund for Independent Innovation of Aero Engine Corporation of China (No. ZZCX-2021-007).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, B., Li, G., An, K. et al. Distributed robust matrix-scaled consensus control of perturbed multi-agent systems. Control Theory Technol. (2024). https://doi.org/10.1007/s11768-024-00203-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11768-024-00203-z

Keywords

Navigation