Skip to main content
Log in

Nash equilibrium seeking with prescribed performance

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

In this work, we study a Nash equilibrium (NE) seeking problem for strongly monotone non-cooperative games with prescribed performance. Unlike general NE seeking algorithms, the proposed prescribed-performance NE seeking laws ensure that the convergence error evolves within a predefined region. Thus, the settling time, convergence rate, and maximum overshoot of the algorithm can be guaranteed. First, we develop a second-order Newton-like algorithm that can guarantee prescribed performance and asymptotically converge to the NE of the game. Then, we develop a first-order gradient-based algorithm. To remove some restrictions on this first-order algorithm, we propose two discontinuous dynamical system-based algorithms using tools from non-smooth analysis and adaptive control. We study the special case in optimization problems. Then, we investigate the robustness of the algorithms. It can be proven that the proposed algorithms can guarantee asymptotic convergence to the Nash equilibrium with prescribed performance in the presence of bounded disturbances. Furthermore, we consider a second-order dynamical system solution. The simulation results verify the effectiveness and efficiency of the algorithms, in terms of their convergence rate and disturbance rejection ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In addition to games, optimization problems are also involved in this work. Unless otherwise specified, the statement “specific objectives" refers to the specific objectives for games.

  2. A map \(F: \mathbb {R}^N\rightarrow \mathbb {R}^N\) is monotone if for all \(x,y\in \mathbb {R}^N\), \((F(x)-F(y))^{\textrm{T}}(x-y)\ge 0\). It is strictly monotone if the inequality is strict when \(x\ne y\). F is strongly monotone if there exists a positive constant m such that \((F(x)-F(y))^{\textrm{T}}(x-y)\ge m\Vert x-y\Vert ^2\) for all \(x,y\in \mathbb {R}^N\) [25].

  3. J is invertible based on Assumptions 12 and Lemma 2, because \(Jz=0\) if and only if \(z=0\). The algorithm is well defined, and we prove that S is bounded in the proof. In addition, the right-hand side of the system is bounded and will not tend to infinity.

References

  1. Bechlioulis, C. P., & Rovithakis, G. A. (2008). Robust adaptive control of feedback linearizable mimo nonlinear systems with prescribed performance. IEEE Transactions on Automatic Control, 53(9), 2090–2099.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ge, S. S., & Li, Z. (2013). Robust adaptive control for a class of mimo nonlinear systems by state and output feedback. IEEE Transactions on Automatic Control, 59(6), 1624–1629.

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, Y., Tong, S., Liu, L., & Feng, G. (2017). Adaptive output-feedback control design with prescribed performance for switched nonlinear systems. Automatica, 80, 225–231.

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, W., Wang, D., Peng, Z., & Li, T. (2015). Prescribed performance consensus of uncertain nonlinear strict-feedback systems with unknown control directions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(9), 1279–1286.

    Article  Google Scholar 

  5. Macellari, L., Karayiannidis, Y., & Dimarogonas, D. V. (2016). Multi-agent second order average consensus with prescribed transient behavior. IEEE Transactions on Automatic Control, 62(10), 5282–5288.

    Article  MathSciNet  MATH  Google Scholar 

  6. Mehdifar, F., Bechlioulis, C. P., Hashemzadeh, F., & Baradarannia, M. (2020). Prescribed performance distance-based formation control of multi-agent systems. Automatica, 119, 109086.

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, J., Du, J., & Lewis, F. L. (2021). Distributed three-dimension time-varying formation control with prescribed performance for multiple underactuated autonomous underwater vehicles. International Journal of Robust and Nonlinear Control, 31(13), 6272–6287.

    Article  MathSciNet  Google Scholar 

  8. Zhang, J. X., & Yang, G. H. (2017). Prescribed performance fault-tolerant control of uncertain nonlinear systems with unknown control directions. IEEE Transactions on Automatic Control, 62(12), 6529–6535.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kostarigka, A. K., Doulgeri, Z., & Rovithakis, G. A. (2013). Prescribed performance tracking for flexible joint robots with unknown dynamics and variable elasticity. Automatica, 49(5), 1137–1147.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ma, H., Zhou, Q., Li, H., & Lu, R. (2021). Adaptive prescribed performance control of a flexible-joint robotic manipulator with dynamic uncertainties. IEEE Transactions on Cybernetics, 52(12), 12905–12915.

    Article  Google Scholar 

  11. Xu, X., Liu, Q., Zhang, C., & Zeng, Z. (2018). Prescribed performance controller design for dc converter system with constant power loads in dc microgrid. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(11), 4339–4348.

    Article  Google Scholar 

  12. Nash, J. (1951). Non-cooperative games. Annals of Mathematics, 54(2), 286–295.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ye, M., & Hu, G. (2017). Distributed Nash equilibrium seeking by a consensus based approach. IEEE Transactions on Automatic Control, 62(9), 4811–4818.

    Article  MathSciNet  MATH  Google Scholar 

  14. Lou, Y., Hong, Y., Xie, L., Shi, G., & Johansson, K. H. (2016). Nash equilibrium computation in subnetwork zero-sum games with switching communications. IEEE Transactions on Automatic Control, 61(10), 2920–2935.

    Article  MathSciNet  MATH  Google Scholar 

  15. Liang, S., Yi, P., & Hong, Y. (2017). Distributed Nash equilibrium seeking for aggregative games with coupled constraints. Automatica, 85, 179–185.

    Article  MathSciNet  MATH  Google Scholar 

  16. Sun, C., & Hu, G. (2020). Continuous-time penalty methods for Nash equilibrium seeking of a nonsmooth generalized noncooperative game. IEEE Transactions on Automatic Control, 66(10), 4895–4902. https://doi.org/10.1109/TAC.2020.3040377.

  17. Frihauf, P., Krstic, M., & Basar, T. (2011). Nash equilibrium seeking in noncooperative games. IEEE Transactions on Automatic Control, 57(5), 1192–1207.

    Article  MathSciNet  MATH  Google Scholar 

  18. Zeng, X., Chen, J., Liang, S., & Hong, Y. (2019). Generalized Nash equilibrium seeking strategy for distributed nonsmooth multi-cluster game. Automatica, 103, 20–26.

    Article  MathSciNet  MATH  Google Scholar 

  19. Pang, Y., & Hu, G. (2020). Distributed Nash equilibrium seeking with limited cost function knowledge via a consensus-based gradient-free method. IEEE Transactions on Automatic Control, 66(4), 1832–1839.

    Article  MathSciNet  MATH  Google Scholar 

  20. De Persis, C., & Grammatico, S. (2019). Continuous-time integral dynamics for a class of aggregative games with coupling constraints. IEEE Transactions on Automatic Control, 65(5), 2171–2176.

    Article  MathSciNet  MATH  Google Scholar 

  21. Tatarenko, T., & Kamgarpour, M. (2018). Learning generalized Nash equilibria in a class of convex games. IEEE Transactions on Automatic Control, 64(4), 1426–1439.

    Article  MathSciNet  MATH  Google Scholar 

  22. Yi, P., & Pavel, L. (2019). An operator splitting approach for distributed generalized Nash equilibria computation. Automatica, 102, 111–121.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu, K., Jing, G., & Wang, L. (2018). Distributed algorithms for searching generalized Nash equilibrium of noncooperative games. IEEE Transactions on Cybernetics, 49(6), 2362–2371.

  24. De Persis, C., & Grammatico, S. (2019). Distributed averaging integral Nash equilibrium seeking on networks. Automatica, 110, 108548.

    Article  MathSciNet  MATH  Google Scholar 

  25. Facchinei, F., & Pang, J. S. (2007). Finite-dimensional variational inequalities and complementarity problems. Springer.

    MATH  Google Scholar 

  26. Scutari, G., Facchinei, F., Pang, J. S., & Palomar, D. P. (2014). Real and complex monotone communication games. IEEE Transactions on Information Theory, 60(7), 4197–4231.

    Article  MathSciNet  MATH  Google Scholar 

  27. Khalil, H. K. (2002). Nonlinear systems, 3rd. Prentice Hall.

    Google Scholar 

  28. Filippov, A. F. (2013). Differential equations with discontinuous righthand sides: control systems. Vol. 18. Springer.

  29. Cortes, J. (2008). Discontinuous dynamical systems. IEEE Control Systems, 28(3), 36–73.

    Article  MathSciNet  MATH  Google Scholar 

  30. Cortes, J. (2006). Finite-time convergent gradient flows with applications to network consensus. Automatica, 42(11), 1993–2000.

    Article  MathSciNet  MATH  Google Scholar 

  31. Fischer, N., Kamalapurkar, R., & Dixon, W. E. (2013). LaSalle-Yoshizawa corollaries for nonsmooth systems. IEEE Transactions on Automatic Control, 58(9), 2333–2338.

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, Y., Liang, S., Wang, X., & Ji, H. (2019). Distributed Nash equilibrium seeking for aggregative games with nonlinear dynamics under external disturbances. IEEE Transactions on Cybernetics, 50(12), 4876–4885.

  33. Romano, A. R., & Pavel, L. (2019). Dynamic NE seeking for multi-integrator networked agents with disturbance rejection. IEEE Transactions on Control of Network Systems, 7(1), 129–139.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Hu.

Additional information

This work was supported by the RIE2020 Industry Alignment Fund—Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Hu, G. Nash equilibrium seeking with prescribed performance. Control Theory Technol. 21, 437–447 (2023). https://doi.org/10.1007/s11768-023-00169-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-023-00169-4

Keywords

Navigation