Skip to main content
Log in

Distributed stochastic mirror descent algorithm for resource allocation problem

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

In this paper, we consider a distributed resource allocation problem of minimizing a global convex function formed by a sum of local convex functions with coupling constraints. Based on neighbor communication and stochastic gradient, a distributed stochastic mirror descent algorithm is designed for the distributed resource allocation problem. Sublinear convergence to an optimal solution of the proposed algorithm is given when the second moments of the gradient noises are summable. A numerical example is also given to illustrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yi, P., Hong, Y., & Liu, F. (2016). Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems. Automatica, 74, 259–269.

    Article  MathSciNet  Google Scholar 

  2. Zeng, X., Yi, P., & Hong, Y. (2018). Distributed algorithm for robust resource allocation with polyhedral uncertain allocation parameters. Journal of Systems Science and Complexity, 31(1), 103–119.

    Article  MathSciNet  Google Scholar 

  3. Nedić, A., Olshevsky, A., & Shi, W. (2012). Improved convergence rates for distributed resource allocation. IEEE Conference on Decision and Control (CDC) (pp. 172–177). Miami Beach, FL. 

  4. Cherukuri, A., & Cortés, J. (2015). Distributed generator coordination for initialization and anytime optimization in economic dispatch. IEEE Transactions on Control of Network Systems, 2(3), 226–237.

    Article  MathSciNet  Google Scholar 

  5. Lakshmanan, H., & De Farias, D. P. (2008). Decentralized resource allocation in dynamic networks of agents. SIAM Journal on Optimization, 19(2), 911–940.

    Article  MathSciNet  Google Scholar 

  6. Yi, P., Lei, J., & Hong, Y. (2018). Distributed resource allocation over random networks based on stochastic approximation. Systems and Control Letters, 114, 44–51.

    Article  MathSciNet  Google Scholar 

  7. Zhang, H., Li, H., Zhu, Y., et al. (2019). A distributed stochastic gradient algorithm for economic dispatch over directed network with communication delays. International Journal of Electrical Power and Energy Systems, 110, 759–771.

    Article  Google Scholar 

  8. Lan, G., Lee, S., & Zhou, Y. (2020). Communication-efficient algorithms for decentralized and stochastic optimization. Mathematical Programming, 180(1), 237–284.

    Article  MathSciNet  Google Scholar 

  9. Yuan, D., Hong, Y., Ho, D. W. C., et al. (2018). Optimal distributed stochastic mirror descent for strongly convex optimization. Automatica, 90, 196–203.

    Article  MathSciNet  Google Scholar 

  10. Bregman, L. M. (1967). The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7(3), 200–217.

    Article  MathSciNet  Google Scholar 

  11. Rockafellar, R. T. (1970). Convex Analysis. Princeton: Princeton University Press.

    Book  Google Scholar 

  12. Wang, Y., Lin, P., & Hong, Y. (2018). Distributed regression estimation with incomplete data in multi-agent networks. Science China Information Sciences, 61(9), 092202. https://doi.org/10.1007/s11432-016-9173-8.

    Article  MathSciNet  Google Scholar 

  13. Liang, S., & Yin, G. (2019). Exponential convergence of distributed primal-dual convex optimization algorithm without strong convexity. Automatica, 105, 298–306.

    Article  MathSciNet  Google Scholar 

  14. Ram, S. S., Nedić, A., & Veeravalli, V. V. (2010). Distributed stochastic subgradient projection algorithms for convex optimization. Journal of Optimization Theory and Applications, 147(3), 516–545.

    Article  MathSciNet  Google Scholar 

  15. Lei, J., Shanbhag, U. V., Pang, J. S., et al. (2020). On synchronous, asynchronous, and randomized best-response schemes for stochastic Nash games. Mathematics of Operations Research, 45(1), 157–190.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFB0901900), the National Natural Science Foundation of China (No. 61733018) and the China Special Postdoctoral Science Foundation Funded Project (No. Y990075G21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Tu.

Appendix

Appendix

Proof of Lemma 4

According to Lemma 2, we have

$$\begin{aligned}&\langle {\varvec{y}}-\varvec{y^{k}}, -\hat{{\varvec{x}}}^{k}+{\varvec{r}}-\varvec{L{\hat{z}^{k}}}\rangle \nonumber \\& \leqslant \dfrac{\alpha }{2}[ \Vert \varvec{y^{k-1}}-{\varvec{y}}\Vert ^{2}- \Vert \varvec{y^{k}}-{\varvec{y}}\Vert ^{2}- \Vert \varvec{y^{k-1}}-\varvec{y^{k}}\Vert ^{2}],\end{aligned}$$
(A1)
$$\begin{aligned}&\langle {\varvec{z}}-\varvec{z^{k}}, \varvec{Ly^{k}}\rangle \nonumber \\& \leqslant \dfrac{\beta }{2}[ \Vert \varvec{z^{k-1}}-{\varvec{z}}\Vert ^{2}- \Vert \varvec{z^{k}}-{\varvec{z}}\Vert ^{2}- \Vert \varvec{z^{k-1}}-\varvec{z^{k}}\Vert ^{2}], \end{aligned}$$
(A2)

and

$$\begin{aligned}&\mathrm {E}G(\varvec{x^{k}},\varvec{\xi ^{k}})-\mathrm {E}G({\varvec{x}},\varvec{\xi })-\mathrm {E}\langle \varvec{y^{k}},\varvec{x^{k}}-{\varvec{r}}\rangle +\mathrm {E}\langle \varvec{y^{k}},{\varvec{x}}-{\varvec{r}}\rangle \nonumber \\& \leqslant \gamma \mathrm {E}[ B({\varvec{x}},\varvec{x^{k-1}})-B({\varvec{x}},\varvec{x^{k}})-B(\varvec{x^{k}},\varvec{x^{k-1}})]. \end{aligned}$$
(A3)

Applying (A1), (A2) and (A3) to (12), we get

$$\begin{aligned} \mathrm {E}Q(\varvec{w^{k}},{\varvec{w}})\leqslant \mathrm {E}\theta _{k}, \end{aligned}$$
(A4)

where

$$\begin{aligned} \theta _{k} =&\gamma [ B({\varvec{x}},\varvec{x^{k-1}})-B({\varvec{x}},\varvec{x^{k}})-B(\varvec{x^{k}},\varvec{x^{k-1}})]\nonumber \\&+\dfrac{\alpha }{2}[ \Vert \varvec{y^{k-1}}-{\varvec{y}}\Vert ^{2}- \Vert \varvec{y^{k}}-{\varvec{y}}\Vert ^{2}- \Vert \varvec{y^{k-1}}-\varvec{y^{k}}\Vert ^{2}]\nonumber \\&+\dfrac{\beta }{2}[ \Vert \varvec{z^{k-1}}-{\varvec{z}}\Vert ^{2}- \Vert \varvec{z^{k}}-{\varvec{z}}\Vert ^{2}- \Vert \varvec{z^{k-1}}-\varvec{z^{k}}\Vert ^{2}]\nonumber \\&+ \langle {\varvec{y}}-\varvec{y^{k}}, (\varvec{x^{k-1}}-\varvec{x^{k}})-(\varvec{x^{k-2}}-\varvec{x^{k-1}})\rangle \nonumber \\&+\langle {\varvec{y}}-\varvec{y^{k}},{\varvec{L}}(\varvec{z^{k-1}}-\varvec{z^{k}})-{\varvec{L}}(\varvec{z^{k-2}}-\varvec{z^{k-1}})\rangle . \end{aligned}$$
(A5)

Summing \(\theta _{k}\) over \(k=1,2,\ldots , T\), we obtain

$$\begin{aligned} \textstyle \sum \limits _{k=1}^{T}\theta _{k} \overset{\mathrm{(a)}}{\leqslant }&\textstyle \sum \limits _{k=1}^{T} [\langle {\varvec{y}}-\varvec{y^{k}}, (\varvec{x^{k-1}}-\varvec{x^{k}})-(\varvec{x^{k-2}}-\varvec{x^{k-1}})\nonumber \\&+{\varvec{L}}(\varvec{z^{k-1}}-\varvec{z^{k}})-{\varvec{L}}(\varvec{z^{k-2}}-\varvec{z^{k-1}})\rangle ] \nonumber \\&-\textstyle \sum \limits _{k=1}^{T}[\gamma B(\varvec{x^{k}},\varvec{x^{k-1}})+\dfrac{\alpha }{2}\Vert \varvec{y^{k-1}}-\varvec{y^{k}}\Vert ^{2}+\dfrac{\beta }{2}\Vert \varvec{z^{k-1}}\nonumber \\&-\varvec{z^{k}}\Vert ^{2}]+\gamma B({\varvec{x}},\varvec{x^{0}})-\gamma B({\varvec{x}},\varvec{x^{T}}) +\dfrac{\alpha }{2}\Vert {\varvec{y}}-\varvec{y^{0}}\Vert ^{2}\nonumber \\&-\dfrac{\alpha }{2}\Vert {\varvec{y}}-\varvec{y^{T}}\Vert ^{2}+\dfrac{\beta }{2}\Vert {\varvec{z}}-\varvec{z^{0}}\Vert ^{2}-\dfrac{\beta }{2}\Vert {\varvec{z}}-\varvec{z^{T}}\Vert ^{2} \nonumber \\ \overset{\mathrm{(b)}}{\leqslant }&\textstyle \sum \limits _{k=1}^{T} [\langle {\varvec{y}}-\varvec{y^{k}}, (\varvec{x^{k-1}}-\varvec{x^{k}})+\varvec{L}(\varvec{z^{k-1}}-\varvec{z^{k}})\rangle ]\nonumber \\&+\gamma B(\varvec{x^{k}},\varvec{x^{k-1}})+\gamma B({\varvec{x}},\varvec{x^{0}})-\gamma B({\varvec{x}},\varvec{x^{T}}) \nonumber \\&-\textstyle \sum \limits _{k=1}^{T} [\langle {\varvec{y}}-\varvec{y^{k-1}}, (\varvec{x^{k-2}}-\varvec{x^{k-1}})+\varvec{L}(\varvec{z^{k-2}}\nonumber \\&-\varvec{z^{k-1}})\rangle ]+\dfrac{\alpha }{2}\Vert {\varvec{y}}-\varvec{y^{0}}\Vert ^{2}-\dfrac{\alpha }{2}\Vert {\varvec{y}}-\varvec{y^{T}}\Vert ^{2} \nonumber \\&-\textstyle \sum \limits _{k=1}^{T}[\langle \varvec{y^{k-1}}-\varvec{y^{k}}, (\varvec{x^{k-2}}-\varvec{x^{k-1}})+\varvec{L}(\varvec{z^{k-2}}\nonumber \\&-\varvec{z^{k-1}})\rangle ]+\dfrac{\beta }{2}\Vert {\varvec{z}}-\varvec{z^{0}}\Vert ^{2}-\dfrac{\beta }{2}\Vert {\varvec{z}}-\varvec{z^{T}}\Vert ^{2} \nonumber \\&-\textstyle \sum \limits _{k=1}^{T}[\dfrac{\alpha }{2}\Vert \varvec{y^{k-1}}-\varvec{y^{k}}\Vert ^{2}+\dfrac{\beta }{2}\Vert \varvec{z^{k-1}}-\varvec{z^{k}}\Vert ^{2}] \nonumber \\ \overset{\mathrm{(c)}}{\leqslant }&\langle {\varvec{y}}-\varvec{y^{T}}, (\varvec{x^{T-1}}-\varvec{x^{T}})+\varvec{L}(\varvec{z^{T-1}}-\varvec{z^{T}})\rangle \nonumber \\&-B(\varvec{x^{T}},\varvec{x^{T-1}} )+\gamma B({\varvec{x}},\varvec{x^{0}})-\gamma B({\varvec{x}},\varvec{x^{T}})) \nonumber \\&-\textstyle \sum \limits _{k=2}^{T}[\langle \varvec{y^{k-1}}-\varvec{y^{k}}, (\varvec{x^{k-2}}-\varvec{x^{k-1}})+\varvec{L}(\varvec{z^{k-2}}-\varvec{z^{k-1}})\rangle \nonumber \\&+\dfrac{\alpha }{2}\Vert \varvec{y^{k-1}}-\varvec{y^{k}}\Vert ^{2}]-\textstyle \sum \limits _{k=2}^{T}[\gamma B(\varvec{x^{k-1}},\varvec{x^{k-2}})\nonumber \\&+\dfrac{\beta }{2}\Vert \varvec{z^{k-2}}-\varvec{z^{k-1}}\Vert ^{2}]-\dfrac{\beta }{2}\Vert \varvec{z^{T-1}}-\varvec{z^{T}}\Vert ^{2}+\dfrac{\alpha }{2}\Vert {\varvec{y}}-\varvec{y^{0}}\Vert ^{2}\nonumber \\&-\dfrac{\alpha }{2}\Vert {\varvec{y}}-\varvec{y^{T}}\Vert ^{2}+\dfrac{\beta }{2}\Vert {\varvec{z}}-\varvec{z^{0}}\Vert ^{2}-\dfrac{\beta }{2}\Vert {\varvec{z}}-\varvec{z^{T}}\Vert ^{2} \nonumber \\ \overset{\mathrm{(d)}}{\leqslant }&\langle {\varvec{y}}-\varvec{y^{T}}, (\varvec{x^{T-1}}-\varvec{x^{T}})+\varvec{L}(\varvec{z^{T-1}}-\varvec{z^{T}})\rangle -\nonumber \\&\gamma B(\varvec{x^{T}},\varvec{x^{T-1}})-\dfrac{\beta }{2}\Vert \varvec{z^{T-1}}-\varvec{z^{T}}\Vert ^{2} +\gamma B({\varvec{x}},\varvec{x^{0}})\nonumber \\&-\gamma B({\varvec{x}},\varvec{x^{T}})+\dfrac{\alpha }{2}\Vert {\varvec{y}}-\varvec{y^{0}}\Vert ^{2}-\dfrac{\alpha }{2}\Vert {\varvec{y}}-\varvec{y^{T}}\Vert ^{2}\nonumber \\&+\dfrac{\beta }{2}\Vert {\varvec{z}}-\varvec{z^{0}}\Vert ^{2}-\dfrac{\beta }{2}\Vert {\varvec{z}}-\varvec{z^{T}}\Vert ^{2} \nonumber \\ \overset{\mathrm{(e)}}{\leqslant }&\langle \varvec{y^{T}}, (\varvec{x^{T}}-\varvec{x^{T-1}})+\varvec{L}(\varvec{z^{T}}-\varvec{z^{T-1}})\rangle \nonumber \\&-\gamma B(\varvec{x^{T}},\varvec{x^{T-1}})-\dfrac{\beta }{2}\Vert \varvec{z^{T-1}}-\varvec{z^{T}}\Vert ^{2}+\dfrac{\beta }{2}\Vert {\varvec{z}}-\varvec{z^{0}}\Vert ^{2}\nonumber \\&+\gamma B({\varvec{x}},\varvec{x^{0}}) +\langle {\varvec{y}}, (\varvec{x^{T-1}}-\varvec{x^{T}})+\varvec{L}(\varvec{z^{T-1}}-\varvec{z^{T}})\nonumber \\&+\alpha (\varvec{y^{T}}-\varvec{y^{0}})\rangle -\dfrac{\alpha }{2}\Vert \varvec{y^{T}}\Vert ^{2}+\dfrac{\alpha }{2}\Vert \varvec{y^{0}}\Vert ^{2} \nonumber \\ \overset{\mathrm{(f)}}{\leqslant }&\gamma B({\varvec{x}},\varvec{x^{0}})+\dfrac{\beta }{2}\Vert {\varvec{z}}-\varvec{z^{0}}\Vert ^{2}+\langle {\varvec{y}}, (\varvec{x^{T-1}}-\varvec{x^{T}})\nonumber \\&+\varvec{L}(\varvec{z^{T-1}}-\varvec{z^{T}})+\alpha (\varvec{y^{T}}-\varvec{y^{0}})\rangle +\dfrac{\alpha }{2}\Vert \varvec{y^{0}}\Vert ^{2}, \end{aligned}$$
(A6)

where (b) follows from \({\varvec{y}}-\varvec{y^{k}}={\varvec{y}}-\varvec{y^{k-1}}+\varvec{y^{k-1}}-\varvec{y^{k}}\), (c) follows from \({\varvec{x}}^{-1}={\varvec{x}}^{0}\) and \({\varvec{z}}^{-1}={\varvec{z}}^{0}\), (d) and (f) follow from \(b\langle u,v \rangle \leqslant \dfrac{a}{2}\Vert v\Vert ^{2}+\dfrac{b^{2}\Vert u\Vert ^{2}}{2a}\) for all \(a>0\) and (14), and (e) follows from \(\Vert {\varvec{y}}-{\varvec{y}}^{0}\Vert ^{2}-\Vert {\varvec{y}}-{\varvec{y}}^{T}\Vert ^{2}=\Vert {\varvec{y}}^{0}\Vert ^{2}-\Vert {\varvec{y}}^{N}\Vert ^{2}-2\langle {\varvec{y}}, {\varvec{y}}^{0}-{\varvec{y}}^{T}\rangle\). (15) follows from (A4) and (A6).

From (A6) (d), Assumption 1 and the fact that \(\textstyle \sum \limits _{k=1}^{T}\mathrm {E}Q(\varvec{w^{k}},\varvec{w^{*}})\geqslant 0\), if we fix \({\varvec{w}}={\varvec{w}}^{*}\), then

$$\begin{aligned}&\dfrac{\gamma }{2}\mathrm {E}\Vert \varvec{x^{T-1}}-\varvec{x^{T}}\Vert ^{2}+\dfrac{\beta }{2}\mathrm {E}\Vert \varvec{z^{T-1}}-\varvec{z^{T}}\Vert ^{2}\nonumber \\ &\leqslant \mathrm {E}\langle \varvec{y^{*}}-\varvec{y^{T}}, (\varvec{x^{T-1}}-\varvec{x^{T}})+\varvec{L}(\varvec{z^{T-1}}-\varvec{z^{T}})\rangle \nonumber \\&\quad +\gamma \mathrm {E} B(\varvec{x^{*}},\varvec{x^{0}})+\dfrac{\alpha }{2}\mathrm {E}\Vert \varvec{y^{*}}-\varvec{y^{0}}\Vert ^{2}-\dfrac{\alpha }{2}\mathrm {E}\Vert \varvec{y^{*}}-\varvec{y^{T}}\Vert ^{2}\nonumber \\&\quad +\dfrac{\beta }{2}\mathrm {E}\Vert \varvec{z^{*}}-\varvec{z^{0}}\Vert ^{2} \nonumber \\& \leqslant \dfrac{1}{\alpha }\mathrm {E}\Vert \varvec{x^{T-1}}-\varvec{x^{T}}\Vert ^{2}+\dfrac{\Vert {\varvec{L}}\Vert ^{2}}{\alpha }\mathrm {E}\Vert \varvec{z^{T-1}}-\varvec{z^{T}}\Vert ^{2}\nonumber \\&\quad +\gamma \mathrm {E} B(\varvec{x^{*}},\varvec{x^{0}})+\dfrac{\alpha }{2}\mathrm {E}\Vert \varvec{y^{*}}-\varvec{y^{0}}\Vert ^{2}+\dfrac{\beta }{2}\mathrm {E}\Vert \varvec{z^{*}}-\varvec{z^{0}}\Vert ^{2}, \end{aligned}$$
(A7)

and

$$\begin{aligned}&\dfrac{\alpha }{2}\mathrm {E}\Vert \varvec{y^{*}}-\varvec{y^{T}}\Vert ^{2}\nonumber \\& \leqslant \mathrm {E} \langle \varvec{y^{*}}-\varvec{y^{T}}, (\varvec{x^{T-1}}-\varvec{x^{T}})+\varvec{L}(\varvec{z^{T-1}}-\varvec{z^{T}})\rangle \nonumber \\&\quad -\gamma \mathrm {E} B(\varvec{x^{T}},\varvec{x^{T-1}})-\dfrac{\beta }{2}\mathrm {E}\Vert \varvec{z^{T-1}}-\varvec{z^{T}}\Vert ^{2} \nonumber \\&\quad +\gamma \mathrm {E} B(\varvec{x^{*}},\varvec{x^{0}})+\dfrac{\alpha }{2}\mathrm {E}\Vert \varvec{y^{*}}-\varvec{y^{0}}\Vert ^{2}-\dfrac{\alpha }{2}\mathrm {E}\Vert \varvec{y^{*}}-\varvec{y^{T}}\Vert ^{2}\nonumber \\&\quad +\dfrac{\beta }{2}\mathrm {E}\Vert \varvec{z^{*}}-\varvec{z^{0}}\Vert ^{2} \nonumber \\& \leqslant (\dfrac{1}{2\gamma }+\dfrac{\Vert {\varvec{L}}\Vert ^{2}}{2\beta }-\dfrac{\alpha }{2})\mathrm {E}\Vert \varvec{y^{*}}-\varvec{y^{T}}\Vert ^{2}\nonumber \\&\quad +\gamma \mathrm {E} B(\varvec{x^{*}},\varvec{x^{0}})+\dfrac{\alpha }{2}\mathrm {E}\Vert \varvec{y^{*}}-\varvec{y^{0}}\Vert ^{2}+\dfrac{\beta }{2}\mathrm {E}\Vert \varvec{z^{*}}-\varvec{z^{0}}\Vert ^{2}, \end{aligned}$$
(A8)

from which (16) follows.\(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tu, Z. & Qin, H. Distributed stochastic mirror descent algorithm for resource allocation problem. Control Theory Technol. 18, 339–347 (2020). https://doi.org/10.1007/s11768-020-00018-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-020-00018-8

Keywords

Navigation