Skip to main content
Log in

New results in global stabilization for stochastic nonlinear systems

  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

This paper presents new results on the robust global stabilization and the gain assignment problems for stochastic nonlinear systems. Three stochastic nonlinear control design schemes are developed. Furthermore, a new stochastic gain assignment method is developed for a class of uncertain interconnected stochastic nonlinear systems. This method can be combined with the nonlinear small-gain theorem to design partial-state feedback controllers for stochastic nonlinear systems. Two numerical examples are given to illustrate the effectiveness of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Artstein. Stabilization with relaxed controls. Nonlinear Analysis: Theory, Methods & Applications, 1983, 7(11): 1163–1173.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. D. Sontag. A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization. Systems & Control Letters, 1989, 13(2): 117–123.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Krstic, I. Kanellakopoulos, P. V. Kokotovíc. Nonlinear and Adaptive Control Design. New York: John Wiley & Sons, 1995.

    Google Scholar 

  4. A. Isidori. Nonlinear Control Systems. 3rd ed. London: Springer, 1995.

    Book  MATH  Google Scholar 

  5. A. Isidori. Nonlinear Control Systems I I. London: Springer, 1999.

    Book  Google Scholar 

  6. E. D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems. 2nd ed. New York: Springer, 1998.

    Book  MATH  Google Scholar 

  7. I. Karafyllis, Z. P. Jiang. Stability and Stabilization of Nonlinear Systems. London: Springer, 2011.

    Book  MATH  Google Scholar 

  8. T. Liu, Z. P. Jiang, D. J. Hill. Nonlinear Control of Dynamic Networks. New York: CRC Press, 2014.

    Book  MATH  Google Scholar 

  9. Z. Xi, D. Cheng, Q. Lu, et al. Nonlinear decentralized saturated controller design for power systems. Automatica, 2002, 38(3): 527–534.

    Article  MATH  Google Scholar 

  10. Z. Xi, G. Feng, D. Cheng, et al. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. IEEE Transactions on Control System Technology, 2003, 11(4): 539–547.

    Article  Google Scholar 

  11. P. Florchinger. A universal formula for the stabilization of control stochastic differential equations. Stochastic Analysis and Applications, 1993, 11(2): 155–162.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Florchinger. Feedback stabilization of affine in the control stochastic differential systems by the control Lyapunov function method. SIAM Journal on Control and Optimization, 1997, 35(2): 500–511.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Krstíc, H. Deng. Stabilization of Nonlinear Uncertain Systems. New York: Springer, 1998.

    MATH  Google Scholar 

  14. X. Mao. Stochastic versions of the LaSalle theorem. Journal of Differential Equations, 1999, 153(1): 175–195.

    Article  MathSciNet  MATH  Google Scholar 

  15. S.-J. Liu, J.-F. Zhang, Z. P. Jiang. Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems. Automatica, 2007, 43(2): 238–251.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. R. Teel, J. P. Hespanha, A. Subbaraman. A converse Lyapunov theorem and robustness for asymptotic stability in probability. IEEE Transactions on Automatic Control, 2014, 59(9): 2426–2441.

    Article  MathSciNet  Google Scholar 

  17. E. D. Sontag. Smooth stabilization implies coprime factorization. IEEE Transactions on Automatic Control, 1989, 34(4): 435–443.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. D. Sontag. Further facts about input to state stabilization. IEEE Transactions on Automatic Control, 1990, 35(4): 473–476.

    Article  MathSciNet  MATH  Google Scholar 

  19. E. D. Sontag, Y. Wang. On characterizations of the input-to-state stability property. Systems & Control Letters, 1995, 24(5): 351–359.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. D. Sontag. On the input-to-state stability property. European Journal of Control, 1995, 1(1): 24–36.

    Article  MATH  Google Scholar 

  21. J. Tsinias. Stochastic input-to-state stability and applications to global feedback stabilization. International Journal of Control, 1998, 71(5): 907–930.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Deng, M. Krstíc. Output-feedback stabilization of stochastic nonlinear systems driven by noise of unknown covariance. Systems & Control Letters, 2000, 39(3): 173–182.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Deng, M. Krstíc, R. J. Williams. Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Transactions on Automatic Control, 2001, 46(8): 1237–1253.

    Article  MATH  Google Scholar 

  24. A. S. Rufino Ferreira, M. Arcak, E. D. Sontag. Stability certification of large scale stochastic systems using dissipativity. Automatica, 2012, 48(11): 2956–2964.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Mateos-Núnez, J. Cortés. pth moment noise-to-state stability of stochastic differential equations with persistent noise. SIAM Journal on Control and Optimization, 2014, 52(4): 2399–2421.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Tang, T. Basar. Stochastic stability of singularly perturbed nonlinear systems. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando: IEEE, 2001: 399–404.

    Google Scholar 

  27. A. R. Teel, J. P. Hespanha, A. Subbaraman. Equivalent characterizations of input-to-state stability for stochastic discretetime systems. IEEE Transactions on Automatic Control, 2014, 59(2): 516–522.

    Article  MathSciNet  Google Scholar 

  28. H. Ito, Y. Nishimura. Stochastic robustness of interconnected nonlinear systems in an iISS framework. Proceedings of the American Control Conference, Portland: IEEE, 2014: 5210–5216.

    Google Scholar 

  29. Y.-G. Liu, Z. Pan, S. Shi. Output feedback control design for strictfeedback stochastic nonlinear systems under a risk-sensitive cost. IEEE Transactions on Automatic Control, 2003, 48(3): 509–513.

    Article  MathSciNet  Google Scholar 

  30. Z.-J. Wu, X.-J. Xie, S.-Y. Zhang. Adaptive backstepping controller design using stochastic small-gain theorem. Automatica, 2007, 43(4): 608–620.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. R. Kumar, P. Varaiya. Stochastic Systems: Estimation, Identification, and Adaptive Control. Englewood Cliffs: Prentice Hall, 1986.

    MATH  Google Scholar 

  32. Z. P. Jiang, A. R. Teel, L. Praly. Small-gain theorem for ISS systems and applications. Mathematics of Control, Signals and Systems, 1994, 7(2): 95–120.

    Article  MathSciNet  MATH  Google Scholar 

  33. Z. P. Jiang, I. M. Y. Mareels. A small-gain control method for nonlinear cascaded systems with dynamic uncertainties. IEEE Transactions on Automatic Control, 1997, 42(3): 292–308.

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Arnold. Stochastic Differential Equations: Theory and Applications. New York: John Wiley & Sons, 1974.

    MATH  Google Scholar 

  35. J. L. Willems, J. C. Willems. Feedback stabilizability for stochastic systems with state and control dependent noise. Automatica, 1976, 12(3): 277–283.

    Article  MathSciNet  MATH  Google Scholar 

  36. H. J. Kushner. Stochastic Stability and Control. London: Academic Press, 1967.

    MATH  Google Scholar 

  37. R. Shadmehr, S. P. Wise. The Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning. Cambridge: MIT Press, 2005.

    Google Scholar 

  38. Y. Jiang, Z. P. Jiang. Robust adaptive dynamic programming for optimal nonlinear control design. Proceedings of the 9th Asian Control Conference, Istanbul: IEEE, 2013: 1–6.

    Google Scholar 

  39. C. M. Harris, D. M. Wolpert. Signal-dependent noise determines motor planning. Nature, 1998, 394(6695): 780–784.

    Article  Google Scholar 

  40. T. Bian, Y. Jiang, Z. P. Jiang. Adaptive dynamic programming and optimal control of nonlinear nonaffine systems. Automatica, 2014, 50(10): 2624–2632.

    Article  MathSciNet  MATH  Google Scholar 

  41. T. Bian, Y. Jiang, Z. P. Jiang. Decentralized adaptive optimal control of large-scale systems with application to power systems. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2439–2447.

    Article  Google Scholar 

  42. T. Bian, Z. P. Jiang. Robust adaptive dynamic programming for continuous-time linear stochastic systems. IEEE International Symposium on Intelligent Control (ISIC), Juan Les Pins: IEEE, 2014: 536–541.

    Google Scholar 

  43. Y. Jiang, Z. P. Jiang. Robust adaptive dynamic programming and feedback stabilization of nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(5): 882–893.

    Article  Google Scholar 

  44. T. Liu, Z. P. Jiang. Event-based control of nonlinear systems with partial state and output feedback. Automatica, 2015, 53: 10–22.

    Article  Google Scholar 

  45. T. Liu, Z. P. Jiang. A small-gain approach to robust event-triggered control of nonlinear systems. IEEE Transactions on Automatic Control, 2015, 60(8): 2072–2085.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Bian.

Additional information

This work was partially supported by the National Science Foundation (Nos. ECCS-1230040, ECCS-1501044).

Tao BIAN received the B.Eng. degree in Automation from Huazhong University of Science and Technology, Wuhan, China, in 2012, and the M.Sc. degree in Electrical Engineering from New York University, NY, in 2014, where he is currently working toward the Ph.D. degree. His research interests include approximate/adaptive dynamic programming, nonlinear control, and stochastic control systems.

Zhong-Ping JIANG received the B.Sc. degree in Mathematics from the University of Wuhan, Wuhan, China, in 1988, the M.Sc. degree in Statistics from the Universite de Paris-sud, France, in 1989, and the Ph.D. degree in Automatic Control and Mathematics from the Ecole des Mines de Paris, France, in 1993. Currently he is a Professor of Electrical and Computer Engineering at New York University Tandon School of Engineering (formerly called Polytechnic University). His main research interests include stability theory, the theory of robust and adaptive nonlinear control, and their applications to underactuated mechanical systems, congestion control, wireless networks, multi-agent systems and systems physiology. Dr. Jiang has served as a Subject Editor for the International Journal of Robust and Nonlinear Control, and as an Associate Editor for Systems & Control Letters, IEEE Transactions on Automatic Control and European Journal of Control. Dr. Jiang is a recipient of the prestigious Queen Elizabeth II Fellowship Award from the Australian Research Council, the CAREER Award from the U.S. National Science Foundation, and the Young Investigator Award from the National Natural Science Foundation of China. He (together with coauthor Yuan Wang) received the Best Theoretic Paper Award at the 2008 World Congress on Intelligent Control and Automation, June 2008, for the paper “A Generalization of the Nonlinear Small-Gain Theorem for Large-Scale Complex Systems”. Dr. Jiang is a Fellow of the IEEE and a Fellow of IFAC.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, T., Jiang, ZP. New results in global stabilization for stochastic nonlinear systems. Control Theory Technol. 14, 57–67 (2016). https://doi.org/10.1007/s11768-016-5117-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-016-5117-7

Keywords

Navigation