Skip to main content
Log in

Gregory Solid Construction for Polyhedral Volume Parameterization by Sparse Optimization

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

In isogeometric analysis, it is frequently required to handle the geometric models enclosed by four-sided or non-four-sided boundary patches, such as trimmed surfaces. In this paper, we develop a Gregory solid based method to parameterize those models. First, we extend the Gregory patch representation to the trivariate Gregory solid representation. Second, the trivariate Gregory solid representation is employed to interpolate the boundary patches of a geometric model, thus generating the polyhedral volume parametrization. To improve the regularity of the polyhedral volume parametrization, we formulate the construction of the trivariate Gregory solid as a sparse optimization problem, where the optimization objective function is a linear combination of some terms, including a sparse term aiming to reduce the negative Jacobian area of the Gregory solid. Then, the alternating direction method of multipliers (ADMM) is used to solve the sparse optimization problem. Lots of experimental examples illustrated in this paper demonstrate the effectiveness and efficiency of the developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T J R Hughes, J A Cottrell, Y Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics & Engineering, 2005, 194(39): 4135–4195.

    Article  MathSciNet  MATH  Google Scholar 

  2. P M Knupp. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities, Part II-A framework for volume mesh optimization and the condition number of the Jacobian matrix, International Journal for Numerical Methods in Engineering, 2000, 48(8): 1165–1185.

    Article  MATH  Google Scholar 

  3. S Boyd, N Parikh, E Chu, B Peleato, J Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations & Trends in Machine Learning, 2010, 3(1): 1–122.

    Article  MATH  Google Scholar 

  4. M S Floater. Parametrization and smooth approximation of surface triangulations, Computer Aided Geometric Design, 1997, 14(3): 231–250.

    Article  MathSciNet  MATH  Google Scholar 

  5. P V Sander, J Snyder, S J Gortler, H Hoppe. Texture mapping progressive meshes, In SIGGRAPH 2001 Conf. Proc, 2001, 14(3): 409–416.

    Google Scholar 

  6. P Alliez, G Ucelli, C Gotsman, M Attene. Recent advances in remeshing of surfaces, Shape Analysis and Structuring, 2008.

    Google Scholar 

  7. K Hormann, G Greiner. Mips: An efficient global parametrization method, Curve and Surface Design: Saint-Malo, 1999, 153–162.

    Google Scholar 

  8. P Degener, J Meseth, R Klein. Texture mapping progressive meshes, International Meshing Roundtable, 2003, (7): 201–213.

    Google Scholar 

  9. M S Floater, K Hormann. Surface Parameterization: a Tutorial and Survey, Advances in Multiresolution for Geometric Modelling, 2005, 1: 157–186.

    Article  MathSciNet  MATH  Google Scholar 

  10. A Sheffer, E Praun, K Rose. Mesh parameterization methods and their applications, Foundations & Trends in Computer Graphics & Vision, 2006, 2(2): 105–171.

    Article  MATH  Google Scholar 

  11. T Martin, E Cohen, R M Kirby. Volumetric parameterization and trivariate b-spline fitting using harmonic functions, Computer Aided Geometric Design, 2009, 26(6): 648–664.

    Article  MathSciNet  MATH  Google Scholar 

  12. T Martin, E Cohen. Volumetric parameterization of complex objects by respecting multiple materials, Computer & Graphics, 2010, 34(3): 187–197.

    Article  Google Scholar 

  13. H Lin, S Jin, Q Hu, Z Liu. Constructing b-spline solids from tetrahedral meshes for isogeometric analysis, Computer Aided Geometric Design, 2015, 35–36: 109–120.

    Article  MathSciNet  MATH  Google Scholar 

  14. W Wang, Y Zhang, L Liu, T J R Hughes. Trivariate solid t-spline construction from boundary triangulations with arbitrary genus topology, Computer-Aided Design, 2013, 45(2): 351–360.

    Article  MathSciNet  Google Scholar 

  15. G Xu, B Mourrain, R Duvigneau, A Galligo. Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications, Computer-Aided Design, 2013, 45(2): 395–404.

    Article  MathSciNet  Google Scholar 

  16. Y Zhang, W Wang, T J R Hughes. Conformal solid T-spline construction from boundary T-spline representations, Computational Mechanics, 2013, 51(6): 1051–1059.

    Article  MathSciNet  MATH  Google Scholar 

  17. X Wang, X Qian. An optimization approach for constructing trivariate B-spline solids, Computer-Aided Design, 2014, 46(1): 179–191.

    Article  MathSciNet  Google Scholar 

  18. H Lin, H Huang, C Hu. Trivariate b-spline solid construction by pillow operation and geometric iterative fitting, SCIENCE CHINA Information Sciences, 2018, 61(11): 118103.

    Article  Google Scholar 

  19. M Meyer, A Barr, H Lee, M Desbrun. Generalized barycentric coordinates on irregular polygons, Journal of Graphics Tools, 2002, 7(1): 13–22.

    Article  MATH  Google Scholar 

  20. M S Floater. Mean value coordinates, Computer Aided Geometric Design, 2003, 20(1): 19–27.

    Article  MathSciNet  MATH  Google Scholar 

  21. M S Floater, G Kós, M Reimers. Mean value coordinates, Computer Aided Geometric Design, 2005, 22(7): 623–631.

    Article  MathSciNet  MATH  Google Scholar 

  22. P Joshi, M Meyer, T Derose, B Green, T Sanocki. Harmonic coordinates for character articulation, Transactions on Graphics, 2007, 26(3): 71.

    Article  Google Scholar 

  23. Y Lipman, D Levin, D Cohen-Or. Green coordinates, Transactions on Graphics, 2008, 27(3): 1–10.

    Article  Google Scholar 

  24. H Chiyokura, F Kimura. Design of solids with free-form surfaces, ACM SIGGRAPH Computer Graphics, 1983, 17(3): 289–298.

    Article  Google Scholar 

  25. H Chiyokura. Localized surface interpolation method for irregular meshes, Advanced Computer Graphics, 1986, 3–19.

    Chapter  Google Scholar 

  26. J A Gregory. Smooth interpolation without twist constraints, Computer Aided Geometric Design, 1974, 71–87.

    Chapter  Google Scholar 

  27. L Longhi. Interpolating patches between cubic boundaries, Computer Science Division, 1987.

    Google Scholar 

  28. C C L Wang, K Tang. Non-self-overlapping structured grid generation on an n-sided surface, International Journal for Numerical Methods in Fluids, 2004, 46(9): 961–982.

    Article  MathSciNet  MATH  Google Scholar 

  29. M Avriel. Nonlinear Programming: Analysis and Methods, 1976.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-wei Lin.

Additional information

This paper was supported by the National Natural Science Foundation of China (No. 61872316), the National Key R&D Program of China (No. 2016YFB1001501), and the Fundamental Research Funds for the Central Universities(No. 2017XZZX009-03).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Cf., Lin, Hw. Gregory Solid Construction for Polyhedral Volume Parameterization by Sparse Optimization. Appl. Math. J. Chin. Univ. 34, 340–355 (2019). https://doi.org/10.1007/s11766-019-3697-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-019-3697-y

MR Subject Classication

Keywords

Navigation