Skip to main content
Log in

Image segmentation by level set evolution with region consistency constraint

  • Published:
Applied Mathematics-A Journal of Chinese Universities Aims and scope Submit manuscript

Abstract

Image segmentation is a key and fundamental problem in image processing, computer graphics, and computer vision. Level set based method for image segmentation is used widely for its topology flexibility and proper mathematical formulation. However, poor performance of existing level set models on noisy images and weak boundary limit its application in image segmentation. In this paper, we present a region consistency constraint term to measure the regional consistency on both sides of the boundary, this term defines the boundary of the image within a range, and hence increases the stability of the level set model. The term can make existing level set models significantly improve the efficiency of the algorithms on segmenting images with noise and weak boundary. Furthermore, this constraint term can make edge-based level set model overcome the defect of sensitivity to the initial contour. The experimental results show that our algorithm is efficient for image segmentation and outperform the existing state-of-art methods regarding images with noise and weak boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Balla-Arabé, X B Gao, B Wang. A fast and robust level set method for image segmentation using fuzzy clustering and lattice Boltzmann method, IEEE Trans Cybern, 2013, 43(3): 910–920.

    Article  Google Scholar 

  2. V Caselles, F Catte, T Coll, F Dibos. A geometric model for active contours in image processing, Numer Math, 1993, 66(1): 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  3. V Caselles, R Kimmel, G Sapiro. Geodesic active contours, Int J Comput Vis, 1997, 22: 61–79.

    Article  MATH  Google Scholar 

  4. T Chan, L Vese. Active contours without edges, IEEE Trans Image Process, 2001, 10(2): 266–277.

    Article  MATH  Google Scholar 

  5. L Cohen, I Cohen. Finite-element methods for active contour models and balloons for 2-D and 3-D images, IEEE Trans Pattern Anal Mach Intell, 2993, 15: 1131–1147.

    Article  Google Scholar 

  6. D Cremers. A multiphase level set framework for variational motion segmentation, In: 4th Int Conf on Scale Space Theories in Computer Vision, LNCS, Vol 2695, 2003, 599–614.

    Article  MATH  Google Scholar 

  7. D Cremers, S J Osher, S Soatto. Kernel density estimation and intrinsic alignment for shape priors in level set segmentation, Int J Comput Vis, 2006, 69(3): 335–351.

    Article  Google Scholar 

  8. A Dirami, K Hammouche, M Diaf, P Siarry. Fast multilevel thresholding for image segmentation through a multiphase level set method, Signal Process, 2013, 93(1): 139–153.

    Article  Google Scholar 

  9. R Girshick, J Donahue, T Darrell, J Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 580–587.

    Chapter  Google Scholar 

  10. M W Jian, K M Lam, J Y Dong. Illumination-insensitive texture discrimination based on illumination compensation and enhancement, Inform Sci, 2014, 269(11): 60–72.

    Article  MathSciNet  Google Scholar 

  11. M Kass, A Witkin, D Terzopoulos. Snakes: Active contour models, Int J Comput Vis, 1987, 1(4): 321–331.

    Article  Google Scholar 

  12. R Kimmel, A Amir, A Bruckstein. Finding shortest paths on surfaces using level set propagation, IEEE Trans Pattern Anal Mach Intell, 1995, 17(6): 635–640.

    Article  Google Scholar 

  13. K C Lee, D J Kriegman. Acquiring linear subspaces for face recognition under variable lighting, IEEE Trans Pattern Anal Mach Intell, 2005, 27(5): 684–698.

    Article  Google Scholar 

  14. C Li, C Xu, C Gui, M D Fox. Level set evolution without re-initialization: A new variational formulation, In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 430–436.

    Google Scholar 

  15. C Li, C Kao, J C Gore, Z Ding. Minimization of region-scalable fitting energy for image segmentation, IEEE Trans Image Process, 2008, 17(10): 1940–1949.

    Article  MathSciNet  MATH  Google Scholar 

  16. C Li, C Xu, M D Fox. Distance regularized level set evolution and its application to image segmentation, IEEE Trans Image Process, 2010, 19(12): 3243–3254.

    Article  MathSciNet  MATH  Google Scholar 

  17. C Li, R Huang, Z Ding, J C Gatenby, D N Metaxas, J C Gore. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI, IEEE Trans Image Process, 2011, 20(7): 2007–2016.

    Article  MathSciNet  MATH  Google Scholar 

  18. R Malladi, J A Sethian, B C Vemuri. Shape modeling with front propagation: a level set approach, IEEE Trans Pattern Anal Mach Intell, 1995, 17(2): 158–175.

    Article  Google Scholar 

  19. B H Menze, A Jakab, S Bauer. The multimodal brain tumor image segmentation benchmark (BRATS), IEEE Trans Med Imag, 2015, 34(10): 1993–2024.

    Article  Google Scholar 

  20. S Osher, J Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J Comput Phys, 1988, 79(1): 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  21. S Osher, R Fedkiw. Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York, 2002.

    MATH  Google Scholar 

  22. N Paragios, R Deriche. Geodesic active contours and level sets for detection and tracking of moving objects, IEEE Trans Pattern Anal Mach Intell, 2002, 22(3): 266–280.

    Article  MATH  Google Scholar 

  23. J Pont-Tuest, P Arbelaez, J T Barron. Multiscale combinatorial grouping for image segmentation and object proposal generation, IEEE Trans Pattern Anal Mach Intell, 2017, 39(1): 128–140.

    Article  Google Scholar 

  24. R Ronfard. Region-based strategies for active contour models, Int J Comput Vis, 1994, 13: 229–251.

    Article  Google Scholar 

  25. C Samson, L Blanc-Feraud, G Aubert, J Zerubia. A variational model for image classification and restoration, IEEE Trans Pattern Anal Mach Intell, 2000, 22(5): 460–472.

    Article  MATH  Google Scholar 

  26. X Song, M Cheng, B L Wang, S H Huang, X Y Huang, J Z Yang. Adaptive fast marching method for automatic liver segmentation from CT images, Med Phys, 2013, 40(9): 897–900.

    Article  Google Scholar 

  27. T Takagi, M Sugeno. Fuzzy identification of systems and its applications to modeling and control, IEEE Trans Syst Man Cybern, 1985, 15(1): 116–132.

    Article  MATH  Google Scholar 

  28. A Tsai, A Yezzi, A S Willsky. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification, IEEE Trans Image Process, 2001, 10(8): 1169–1186.

    Article  MATH  Google Scholar 

  29. A Vasilevskiy, K Siddiqi. Flux-maximizing geometric flows, IEEE Trans Pattern Anal Mach Intell, 2002, 24(12): 1565–1578.

    Article  MATH  Google Scholar 

  30. L Vese, T Chan. A multiphase level set framework for image segmentation using the Mumford and Shah model, Int J Comput Vis, 2002, 50: 271–293.

    Article  MATH  Google Scholar 

  31. H Wang, T Z Huang, Z B Xu, Y L Wang. An active contour model and its algorithms with local and global Gaussian distribution fitting energies, Inform Sci, 2014, 263(1): 43–59.

    Article  Google Scholar 

  32. X Yang, X Gao, D Tao, X Li. Improving level set method for fast auroral oval segmentation, IEEE Trans Image Process, 2014, 23(7): 2854–2865.

    Article  MathSciNet  MATH  Google Scholar 

  33. X Yang, X B Gao, D C Tao. An efficient MRF embedded level set method for image segmentation, IEEE Trans Image Process, 2015, 24(1): 9–21.

    Article  MathSciNet  Google Scholar 

  34. K H Zhang, L Zhang, K M Lam. A level set approach to image segmentation with intensity inhomogeneity, IEEE Trans Cybern, 2016, 46(2): 546–557.

    Article  Google Scholar 

  35. W L Zhang, R J Li, H T Deng, L Wang, W L Lin, S W Ji, D G Shen. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation, Neuroimage, 2015, 108: 214–224.

    Article  Google Scholar 

  36. H Zhao, T Chan, B Merriman, S Osher. A variational level set approach to multiphase motion, J Comput Phys, 1996, 127(1): 179–195.

    Article  MathSciNet  MATH  Google Scholar 

  37. Y Q Zhao, X H Wang, X F Wang. Retinal vessels segmentation based on level set and region growing, Pattern Recogn, 2014, 47(7): 2437–2446.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai-ming Zhang.

Additional information

This work was supported in part by the NSFC-Zhejiang Joint Fund of the Integration of Informatization and Industrialization (U1609218), NSFC(61772312, 61373078, 61772253), the Key Research and Development Project of Shandong Province (2017GGX10110), NSF of Shandong Province (ZR2016FM21, ZR2016FM13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, L., Zhou, Yf., Zhang, Xf. et al. Image segmentation by level set evolution with region consistency constraint. Appl. Math. J. Chin. Univ. 32, 422–442 (2017). https://doi.org/10.1007/s11766-017-3534-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11766-017-3534-0

Keywords

MR Subject Classification

Navigation