Skip to main content

Advertisement

Log in

The effects of salinity on phytoplankton community structure in the 6 lagoons of the Marmara Basin (Türkiye)

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Although the effect of salinity on phytoplankton community structure has been studied in many coastal lagoons at different times, it has not been studied simultaneously in different lagoons that are not on the same delta but are geographically close to each other. In the present study, the effect of temporal and spatial changes in salinity on the phytoplankton biovolume, species richness, diversity, and species composition was investigated seasonally in 2020 and 2021 in 6 coastal lagoons of Marmara Basin (Türkiye). In more saline lagoons, phytoplankton biovolume, species richness, diversity, and the total number of species were lower. In lagoons which salinity values were approximate, the species composition was similar. Although the salinity in the lagoons did not show significant change seasonally, biovolume values were lower in Mert lagoon in the fall of 2020 when the salinity values were higher compared to the spring of 2021. Moreover, the considerable decrease in salinity shifted the dominant species structure from high salinity optima species to low salinity optima species in this lagoon. Other effective parameters in the seasonal distribution of dominant species were detected as temperature, dissolved oxygen, alkalinity, and nitrate nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Akagha SC, Nwankwo DI, Yin K (2020) Dynamics of nutrient and phytoplankton in Epe Lagoon, Nigeria: possible causes and consequences of reoccurring cyanobacterial blooms. Appl Water Sci 10:1–16. https://doi.org/10.1007/s13201-020-01190-7

    Article  CAS  Google Scholar 

  • Aktan Y, Gürevin C, Dorak Z (2009) The Effect of Environmental factors on the growth and size structure of two Dominant Phytoplankton species in the Büyükçekmece Reservoir (İstanbul, Turkey). Turk J Biol 33:335–340. https://doi.org/10.3906/biy-0805-28

    Article  CAS  Google Scholar 

  • Albay M, Matthiensen A, Codd GA (2005) Occurrence of toxic blue-green algae in the Kucukcekmece lagoon (Istanbul, Turkey). Environ Toxicol 20:277–284. https://doi.org/10.1002/tox.20118

    Article  CAS  PubMed  Google Scholar 

  • Allende L, Fontanarrosa MS, Murno A, Sinistro R (2019) Phytoplankton functional group classifications as a tool for biomonitoring shallow lakes: a case study. Knowl Manag Aquat Ecosyst 420:5. https://doi.org/10.1051/kmae/2018044

    Article  Google Scholar 

  • Altinoluk-Mimiroglu P, Camur-Elipek B (2018) Comparative analysis of chemical and bacterial distribution of coastal lagoons and freshwater lakes in Turkish Thrace. Hidrobiológica 28:61–69

    Article  Google Scholar 

  • Altınsaçlı S (2001) The Ostracoda (Crustacea) Fauna of Lakes Erikli, Hamam, Mert, Pedina and Saka (İğneada, Kırklareli, Turkey). Turk J Zool 25(4):343–355 (https://journals.tubitak.gov.tr/zoology/vol25/iss4/1)

    Google Scholar 

  • Anandraj A, Perissinotto R, Nozais C, Stretch D (2008) The recovery of microalgal production and biomass in a South African temporarily open/closed estuary, following mouth breaching. Estuar Coast Shelf Sci 79(4):599–606. https://doi.org/10.1016/j.ecss.2008.05.015

    Article  Google Scholar 

  • Angus S (2017) Scottish saline lagoons: impacts and challenges of climate change. Estuar Coast Shelf Sci 198:626–635. https://doi.org/10.1016/j.ecss.2016.07.014

    Article  Google Scholar 

  • Annabi-Trabelsi N, Guermazi W, Leignel V et al (2022) Effects of Eutrophication on Plankton abundance and composition in the Gulf of Gabès (Mediterranean Sea, Tunisia). Water 14(14):2230. https://doi.org/10.3390/w14142230

    Article  CAS  Google Scholar 

  • Atalay I, Ekinci D, Bayrak AGM (2015) Ecological problems based on anthropogenic process of some Coastal Wetlands in Turkey. National Geomorphology Symposium, Samsun

  • Aubry FB, Acri F, Bianchi F, Pugnetti A (2013) Looking for patterns in the phytoplankton community of the Mediterranean Microtidal Venice Lagoon: evidence from ten years of observations. Sci Mar 77(1):47–60

    Article  CAS  Google Scholar 

  • Barillé L, Haure J, Pales-Espinosa E, Morançais M (2003) Finding new diatoms for intensive rearing of the pacific oyster (Crassostrea gigas): energy budget as a selective tool. Aquaculture 217:501–514. https://doi.org/10.1016/S0044-8486(02)00257-0

    Article  Google Scholar 

  • Barnes N, Bamber RN, Moncrieff CB, Sheader M, Ferrero TJ (2008) Meiofauna in closed coastal saline lagoons in the United Kingdom: structure and biodiversity of the nematode assemblage. Estuar Coast Shelf Sci 79(2):328–340. https://doi.org/10.1016/j.ecss.2008.03.017

    Article  Google Scholar 

  • Barzegar R, Moghaddam AA, Soltani S, Fijani E, Tziritis E, Kazemian N (2017) Heavy metal (loid) s in the groundwater of Shabestar area (Nw Iran): source identifcation and health risk assessment. Expos Health 11:251–265. https://doi.org/10.1007/s12403-017-0267-5

    Article  Google Scholar 

  • Bergesch M, Garcia M, Odebrecht C (2009) Diversity and morphology of Skeletonema species in Southern Brazil, Southwestern Atlantic Ocean 1. J Phycol 45(6):1348–1352. https://doi.org/10.1111/j.1529-8817.2009.00743.x

    Article  PubMed  Google Scholar 

  • Braarud T (1951) Salinity as an ecological factor in marine phytoplankton. Physiol Plant 4(1):28–34. https://doi.org/10.1111/j.1399-3054.1951.tb07512.x

    Article  Google Scholar 

  • Brierley B, Carvalho L, Davies S, Krokowski J (2007) Guidance on the quantitative analysis of phytoplankton in freshwater samples. Report to SNIFFER (Project WFD80), Edinburgh

  • Camur-Elipek B, Kirgiz T, Oterler B, Tas M (2015) Qualitative and quantitative evaluation of water resources that feed into the National Park Igneada Longoz forests (Turkish Thrace) by using physico-chemical and biological analyses. Hidrobiológica 25(2):231–237

    Google Scholar 

  • Carli A, Pane L, Romairone V (1994) A study of phytoplankton populations of the Riva Trigoso Bay (Gulf of Genoa) in relation to eutrophication features of the water. Final Reports on Research Projects Dealing with Eutrophication Problems. MAP Technical Reports Series No. 78. UNEP/FAO, Athens

    Google Scholar 

  • Carlson RE, Simpson J (1996) A coordinator’s guide to volunteer lake monitoring methods. N Am Lake Manage Soc 96:305

    Google Scholar 

  • Caroppo C, Roselli L, Di Leo A (2018) Hydrological conditions and phytoplankton community in the Lesina lagoon (southern Adriatic Sea, Mediterranean). Environ Sci Pollut Res 25(2):1784–1799. https://doi.org/10.1007/s11356-017-0599-5

    Article  CAS  Google Scholar 

  • Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol-Prog Ser 210:223–253. https://doi.org/10.3354/meps210223

    Article  CAS  Google Scholar 

  • Cole GA (1994) Textbook of Limnology. Waveland Press Inc, Illinois

    Google Scholar 

  • Comin FA, Valiela I (1993) On the controls of phytoplankton abundance and production in coastal lagoons. J Coastal Res 9:895–906

    Google Scholar 

  • Corsi SR, Graczyk DJ, Geis SW, Booth NL, Richards KD (2010) A fresh look at road salt: aquatic toxicity and water-quality impacts on local, regional, and national scales. Environ Sci Technol 44(19):7376–7382. https://doi.org/10.1021/es101333u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalkıran G, Baki B (2011) Türkiye’nin Tapulu Tek Gölü: Hersek Lagünü. 2. Türkiye Sulak Alanlar Kongresi, Kırşehir, Turkiye (in Turkish)

  • Delgado M, Fortuno JM (1991) Atlas De Fitoplancton Del Mar Mediterráneo. Sci Mar 55:1–133

    Google Scholar 

  • Demirci A, Mcadams MA, Alagha O, Karakuyu M (2006) The relationship between land use change and water quality in Küçükçekmece Lake watershed. GIS Days Proceedings Book, pp 27–34

  • Derolez V, Soudant D, Malet N et al (2020) Two decades of oligotrophication: evidence for a phytoplankton community shift in the coastal lagoon of Thau (Mediterranean Sea, France). Estuar Coast Shelf Sci 241:106810. https://doi.org/10.1016/j.ecss.2020.106810

    Article  Google Scholar 

  • Directorate General Of Water Management (2015) Yer Üstü Suları, Yer Altı Suları ve Sedimentten Numune Alma ve Biyolojik Örnekleme Tebliği. Resmi Gazete, Sayı, p 29274. (in Turkish)

  • Directorate General of Water Management (2016) İklim Değişikliğinin Su Kaynaklarina Etkisi Projesi - Marmara Havzası, Proje Nihai Raporu. T.C. Orman ve Su İşleri Bakanlığı

  • Domingos P, Gômara GA, Sampaio GF, Soares MF, Soares FDFL (2012) Eventos De Mortandade De Peixes Associados A Florações Fitoplanctã Nicas na Lagoa Rodrigo De Freitas: Programa De 10 Anos De Monitoramento. Oecologia Australis 16(3):441–466

    Article  Google Scholar 

  • Draredja MA, Frihi H, Boualleg C, Gofart A, Abadie E, Laabir M (2019) Seasonal variations of phytoplankton community in relation to environmental factors in a protected meso-oligotrophic southern Mediterranean Marine ecosystem (Mellah lagoon, Algeria) with an emphasis of HAB species. Environ Monit Assess 191(10):1–17. https://doi.org/10.1007/s10661-019-7708-5

    Article  Google Scholar 

  • Dugan HA, Summers JC, Skaff NK et al (2017) Long-term chloride concentrations in north American and European freshwater lakes. Sci Data 4(1):1–11. https://doi.org/10.1038/sdata.2017.101

    Article  CAS  Google Scholar 

  • El Gammal MAM, Nageeb M, Al-Sabeb S (2017) Phytoplankton abundance in relation to the quality of the coastal water–Arabian Gulf, Saudi Arabia. Egypt J Aquat Res 43(4):275–282. https://doi.org/10.1016/j.ejar.2017.10.004

    Article  Google Scholar 

  • Ergul HA, Karademir A (2020) A modeling approach on the PCDD/F pollution in surface sediments of the Izmit Bay (the Marmara Sea). Reg Stud Mar Sci 35:101195. https://doi.org/10.1016/j.rsma.2020.101195

    Article  Google Scholar 

  • European Committee for Standardization (2004) Water quality – Guidance standard for the surveying, sampling and laboratory analyses of phytobenthos in shallow running water. European Standard EN, 15708, Brussels

  • Evagelopoulos A, Spyrakos E, Koutsoubas D (2007) Thebiological system of the lower salinity ponds in Kalloni Saltworks (NE. Aegean Sea, Greece): phytoplankton and macrobenthic invertebrates. Transit Waters Bullet 1(3):23–25. https://doi.org/10.1285/i1825229Xv1n3p23

    Article  Google Scholar 

  • Fatah AE, Ali HM, Ibrahim DM (2022) Seasonal dynamics and ecological drivers of Prorocentrum micans Ehrenberg dinoflagellate blooms in Qarun Lake, Egypt. Egypt J Aquat Res 48(4):375–382. https://doi.org/10.1016/j.ejar.2022.07.001

    Article  Google Scholar 

  • Flöder S, Burns CW (2004) Phytoplankton diversity of shallow tidal lakes: influence of periodic salinity changes on diversity and species number of a natural assemblage. J Phycol 40:54–61. https://doi.org/10.1046/j.1529-8817.2004.03050.x

    Article  Google Scholar 

  • Flöder S, Jaschinski S, Wells G, Burns CW (2010) Dominance and compensatory growth in phytoplankton communities under salinity stress. J Exp Mar Biol Ecol 395(1–2):223–231. https://doi.org/10.1016/j.jembe.2010.09.006

    Article  Google Scholar 

  • Froneman P (2004) Food web dynamics in a temperate temporarily open/closed estuary (South Africa). Estuar Coast Shelf Sci 59:87–95. https://doi.org/10.1016/j.ecss.2003.08.003

    Article  CAS  Google Scholar 

  • Garmendia M, Borja A, Franco J, Revilla M (2013) Phytoplankton composition indicators for the assessment of eutrophication in marine waters: present state and challenges within the European directives. Mar Pollut Bull 66:7–16. https://doi.org/10.1016/j.marpolbul.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  • Gobler C, Cullison L, Koch F, Harder M, Krause J (2005) Influence of freshwater flow, ocean exchange, and seasonal cycles on phytoplankton - nutrient dynamics in a temporarily open estuary. Estuar Coast Shelf Sci 65:275–288. https://doi.org/10.1016/j.ecss.2005.05.016

    Article  Google Scholar 

  • Gosselain V, Descy JP, Everbecq E (1994) The phytoplankton community of the River Meuse, Belgium: seasonal dynamics (year 1992) and the possible incidence of zooplankton grazing. Hydrobiologia 289(1):179–191. https://doi.org/10.1007/BF00007419

    Article  Google Scholar 

  • Gotsis-Skretas O, Friligos N (1990) Contribution to eutrophication and phytoplankton ecology in the Thermaikos Gulf. Thalassographica 13(1):1–12

    Google Scholar 

  • Güher H (2003) Mert, Erikli, Hamam Ve Pedina (İğneada, Kırklareli) Göller’inin Zooplanktonik Organizmaların Kommunite Yapısı. Ege J Fish Aquat Sci 20(1):51–62

    Google Scholar 

  • Guiry MD, Guiry GM (2023) Algaebase. World-wide electronic publication. National University Of Ireland, Galway. http://www.algaebase.Org Accessed 05.01.2023

  • Gülecal Y, Temel M (2014) Water quality and phytoplankton diversity in Büyükçekmece Watershed, Turkey. J Water Resour Protect 6:55–61. https://doi.org/10.4236/jwarp.2014.61009

    Article  CAS  Google Scholar 

  • Hammer UT (1986) Saline lake ecosystems of the world. Dr W. Junk Publishers, Kluwer Academic Publisher Group, Dordrecht

    Google Scholar 

  • Happey-Wood CM (1976) Influence of stratification on the growth of planktonic Chlorophyceae in a small body of water. Brit Phycol J 11(4):371–381. https://doi.org/10.1080/00071617600650421

    Article  Google Scholar 

  • Haraguchi L, Carstensen J, Abreu PC, Odebrecht C (2015) Long-term changes of the phytoplankton community and biomass in the subtropical shallow Patos Lagoon Estuary, Brazil. Estuar Coast Shelf Sci 162:76–87. https://doi.org/10.1016/j.ecss.2015.03.007

    Article  CAS  Google Scholar 

  • Hendey NI (1964) An introductory account of the smaller Algae of the British Coastal Waters, Part V: Bacillariophyceae (Diatoms). Fishery investigations, ser, vol 4. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Hernando M, Schloss IR, Malanga G, Almandoz GO, Ferreyra GA, Aguiar MB, Puntarulo S (2015) Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition. J Exp Mar Biol Ecol 466:110–119. https://doi.org/10.1016/j.jembe.2015.02.012

    Article  CAS  Google Scholar 

  • Huber-Pestalozzi G (1972) Das Phytoplankton Des SüßwasSers. Systematik und Biologie: Chlorophyceae (Grünalgen). Ordnung: Tetrasporales. Schweizerbart, Stuttgart

  • Huber-Pestalozzi G (1941) Das Phytoplankton Des SüßwasSers: Chrysophyceen, Farblose Flagellaten Heterokonten. Schweizerbart, Stuttgart

    Google Scholar 

  • Huber-Pestalozzi G (1950) Das Phytoplankton Des SüßwasSers: Cryoptophyceen, Chloromonadien, Peridineen. Schweizerbart, Stuttgart

    Google Scholar 

  • Huber-Pestalozzi G (1961) Das Phytoplankton Des SüßWassers: Chlorophyceae, Ordnung: Volvocales. Schweizerbart, Stuttgart

    Google Scholar 

  • Huber-Pestalozzi G (1962) Das Phytoplankton Des SüßwasSers. Systematik Und Biologie: Blaualgen. Schweizerbart, Stuttgart

    Google Scholar 

  • Huber-Pestalozzi G (1969) Das Phytoplankton Des SüßwasSers Systematik Und Biologie: Euglenophyceen. Schweizerbart, Stuttgart

    Google Scholar 

  • Huber-Pestalozzi G (1975) Das Phytoplankton Des SüßwasSers. Systematik Und Biologie: Diatomeen. Schweizerbart, Stuttgart

    Google Scholar 

  • Huber-Pestalozzi G (1982) Das Phytoplankton Des SüßwasSers. Systematik Und Biologie: Conjugatophyceae (Desmidiales Und Zygnematales) (Excl. Zygnemataceae). Schweizerbart, Stuttgart

    Google Scholar 

  • Huber-Pestalozzi G (1983) Das Phytoplankton Des SüßwasSers. Systematik Und Biologie: Chlorophyceae (Grünalgen) Ordnung: Chlorococcales. Schweizerbart, Stuttgart

    Google Scholar 

  • ISKI (2023) Home page. web site. http://www.iski.gov.tr/web/. Accessed 03.01.2023

  • Jacquet S, Delesalle B, Torréton JP, Blanchot J (2006) Response of phytoplankton communities to increased anthropogenic influences (southwestern lagoon, New Caledonia). Mar Ecol-Prog Ser 320:65–78. https://doi.org/10.3354/meps320065

    Article  CAS  Google Scholar 

  • Jensen P, Jeppesen E, Olrik K, Kristensen P (1994) ImPact of nutrients and physical factors on the Shift from CyanoBacterial to chlorophyte dominance in shallow Danish lakes. Can J Fish Aquat Sci 51(8):1692–1699. https://doi.org/10.1139/f94-170

    Article  Google Scholar 

  • John DM, Whitton BA, Brook AJ (2003) The FreshWater Algal Flora of the British Isles: an Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Kies L (1997) Distribution, biomass and production of planktonic and benthic algae in the Elbe Estuary. Oceanograp Lit Rev 11(44):1328

    Google Scholar 

  • Kirst GO (1989) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 40:21–53

    Google Scholar 

  • Kirst GO (1996) Osmotic adjustment in phytoplankton and macroalgae. In: Kiene PR, Visscher PT, Keller MD, Kirst GO (eds) Biological and environmental chemistry of DMSP and related sulfonium compounds. Springer, Boston, pp 121–129

    Chapter  Google Scholar 

  • Komarek J, Anagnostidis K (2008) Cyanoprokaryota: Oscillatoriales, Süßwasserflora Von Mitteleuropa. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Krammer K (2000) Diatoms of Europe. In: Lange-Bertalot H (ed) The Genus Pinnularia, vol 1. A.R.G. Gantner Verlag, Ruggell

    Google Scholar 

  • Krammer K (2002) Diatoms of the European Inland Waters and comparable habitats, Cymbella, vol 3. A.R.G. Gantner Verlag, Ruggell

    Google Scholar 

  • Krammer K (2003) Diatoms of Europe. Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella, vol 4. A.R.G. Gantner Verlag, Ruggell

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1986) Freshwater flora of Central Europe: Bacillariophyceae, I. Naviculaceae. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991a) Freshwater flora of Central Europe: Bacillariophyceae. III. Centrales, Fragilariaceae, Eunoticeae. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991b) Freshwater flora of Central Europe: Bacillariophyceae. IV. Achnanthaceae, critical additions to Navicula (Lineolatae) and Gomphonema. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1999) Freshwater flora of Central Europe: Bacillariophyceae. II. Epithemiaceae, Surirellaceae. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Lancelot C, Muylaert K (2011) 7.02 trends in estuarine phytoplankton ecology. Treatise on estuarine and coastal science. Academic Press, Waltham, pp 5–15

    Chapter  Google Scholar 

  • Lange-Bertalot H (2001) Navicula Sensu Stricto 10 genera separated from Navicula Sensu Lato Frustulia. In: Lange-Bertalot H (ed) Diatoms of Europe - Diatoms of the European Inland Waters and comparable habitats. Gantner Verlag, Ruggell

    Google Scholar 

  • Lange-Bertalot H, Hofmann G, Werum M, Cantonati M, Kelly MG (2017) Freshwater benthic diatoms of Central Europe: over 800 common species used in ecological assessment. Schmitten-Oberreifenberg, Koeltz Botanical Books, Germany

    Google Scholar 

  • Li Z, Gao Y, Wang S, Lu Y, Sun K, Jia J, Wang Y (2021) Phytoplankton community response to nutrients along lake salinity and altitude gradients on the Qinghai-Tibet Plateau. Ecol Indic 128:107848. https://doi.org/10.1016/j.ecolind.2021.107848

    Article  CAS  Google Scholar 

  • Li RH, Liu SM, Li YW, Zhang GL, Ren JL, Zhang J (2014) Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea. Biogeosciences 11(2):481–506. https://doi.org/10.5194/bg-11-481-2014

    Article  Google Scholar 

  • Lloret J, Marín A, Marín-Guirao L (2008) Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuar Coast Shelf Sci 78(2):403–412. https://doi.org/10.1016/j.ecss.2008.01.003

    Article  Google Scholar 

  • López-Flores R, Boix D, Badosa A, Brucet S, Quintana XD (2006) Pigment composition and size distribution of phytoplankton in a confined Mediterranean salt marsh ecosystem. Mar Biol 149(6):1313–1324. https://doi.org/10.1007/s00227-006-0273-9

    Article  Google Scholar 

  • Lugoli F, Garmendia M, Lehtinen S, Kauppila P, Moncheva S, Revilla M, Roselli L, Slabakova N, Valencia V, Dromph KM, Basset A (2012) Application of a new multi-metric phytoplankton index to the assessment of ecological status in marine and transitional waters. Ecol Indic 23:338–355. https://doi.org/10.1016/j.ecolind.2012.03.030

    Article  Google Scholar 

  • Marshall HG, Nesius KK, Cibik SJ (1981) Phytoplankton Studies within the Virginia Barrier islands II. Seasonal Study of Phytoplankton within the Barrier Island channels. Castanea, pp 89–99

  • Muylaert K, Sabbe K (1999) Spring phytoplankton assemblages in and around the maximum turbidity zone of the estuaries of the Elbe (Germany), the Schelde (Belgium/ The Netherlands) and the Gironde (France). J Mar Syst 22:133–149. https://doi.org/10.1016/S0924-7963(99)00037-8

    Article  Google Scholar 

  • Naselli-Flores L, Barone R (2000) Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia 438(1):65–74. https://doi.org/10.1023/A:1004109912119

    Article  CAS  Google Scholar 

  • Naselli-Flores L, Barone R (2003) Steady-state assemblages in a Mediterranean Hypertrophic Reservoir. The role of Microcystis Ecomorphological variability in maintaining an apparent equilibrium. In: Naselli-Flores L, Padisák J, Dokulil MT (eds) Phytoplankton and Equilibrium Concept. The Ecology Of Steady-State Assemblages Springer, Dordrecht, pp 133–143

    Google Scholar 

  • Navas-Parejo JCC, Corzo A, Papaspyrou S (2020) Seasonal cycles of phytoplankton biomass and primary production in a tropical temporarily open-closed estuarine lagoon-the effect of an extreme climatic event. Sci Total Environ 723:138014. https://doi.org/10.1016/j.scitotenv.2020.138014

    Article  CAS  Google Scholar 

  • Nche-Fambo FA, Scharler UM, Tirok K (2015) Resilience of estuarine phytoplankton and their temporal variability along salinity gradients during drought and hypersalinity. Estuar Coast Shelf Sci 158:40–52. https://doi.org/10.1016/j.ecss.2015.03.011

    Article  CAS  Google Scholar 

  • Odountan OH, de Bisthoven LJ, Koudenoukpo CZ, Abou Y (2019) Spatio-temporal variation of environmental variables and aquatic macroinvertebrate assemblages in Lake Nokoué, a RAMSAR site of Benin. Afr J Aquat Sci 44(3):219–231. https://doi.org/10.2989/16085914.2019.1629272

    Article  CAS  Google Scholar 

  • Oğuz S (1995) İstabul’Un İçme Suyu Meselesi. İSKİ Haber 1:11–12

    Google Scholar 

  • Ohtake H, Kondo K, Seike Y (1982) Seasonal and areal features of the lagoonal environment in Lake Nakanoumi, a shallow coastal lagoon in Japan. Hydrobiologia 97(1):15–26. https://doi.org/10.1007/BF00014956

    Article  Google Scholar 

  • Okumuş E (2007) Küçükçekmece Gölü Sedimentinde Ağır Metal (Zn2+, Fe2+, Cu2+) Adsorpsiyonu. Dissertation, Yıldız Technical University (in Turkish)

  • Ortega-Cisneros K, Scharler UM, Whitfield AK (2014) Inlet mouth phase influences density, variability and standing stocks of plankton assemblages in temporarily open/closed estuaries. Estuar Coast Shelf Sci 136:139–148. https://doi.org/10.1016/j.ecss.2013.11.021

    Article  Google Scholar 

  • Özhan S (2004) Watershed management. Publication no. 481. IU Faculty of Forestry Publications, Istanbul

  • Özuluğ M (1999) A taxonomic study on the fish in the basin of Büyükçekmece Dam Lake. Turk J Zool 23(4):439–452

    Google Scholar 

  • Padisák J, Crossetti LO, Naselli-Flores L (2009) Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1):1–19. https://doi.org/10.1007/s10750-008-9645-0

    Article  Google Scholar 

  • Paerl HW, Otten TG, Kudela R (2018) Mitigating the expansion of harmful algal blooms across the freshwater-to-marine continuum. Environ Sci Technol 52:5519–5529. https://doi.org/10.1021/acs.est.7b05950

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi S, Wikner J, Panigrahy RJ, Satapathy KK, Acharya BC (2009) Variability of nutrients and phytoplankton biomass in a shallow brackish water ecosystem (Chilika Lagoon, India). Limnology 10:73–85. https://doi.org/10.1007/s10201-009-0262-z

    Article  CAS  Google Scholar 

  • Pednekar SM, Kerkar V, Matondkar SGP (2014) Spatiotemporal distribution in phytoplankton community with distinct salinity regimes along the Mandovi estuary, Goa, India. Turk J Bot 38(4):800–818. https://doi.org/10.3906/bot-1309-29

    Article  Google Scholar 

  • Reati GJ, Florín M, Fernández GJ, Montes C (1996) The Laguna De Mar Chiquita (Córdoba, Argentina): a little known, secularly fluctuating, saline lake. Int J Salt Lake Res 5(3):187–219. https://doi.org/10.1007/BF01997137

    Article  Google Scholar 

  • Redden AM, Rukminasari N (2008) Effects of increases in salinity on phytoplankton in the Broadwater of the Myall Lakes, NSW, Australia. Hydrobiologia 608(1):87–97. https://doi.org/10.1007/s10750-008-9376-2

    Article  CAS  Google Scholar 

  • Rochette S, Rivot E, Morin J, Mackinson S, Riou P, Le Pape O (2010) Effect of nursery habitat degradation on flatfish population: application to Solea solea in the Eastern Channel (Western Europe). J Sea Res 64:34–44. https://doi.org/10.1016/j.seares.2009.08.003

    Article  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: morphology and Biology of the Genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Senel G, Dogru AO, Goksel C (2020) Exploring the potential of Landsat-8 OLI and Sentinel-2 MSI data for mapping and monitoring Enez Dalyan Lagoon. Desalin Water Treat 177:330–337. https://doi.org/10.5004/dwt.2020.24802

    Article  Google Scholar 

  • Serengil Y, Gökbulak F, Özhan S, Hizal A, Sengönül K (2007) Alteration of stream nutrient discharge with increased sedimentation due to thinning of a deciduous forest in Istanbul. For Ecol Manag 246:264–272. https://doi.org/10.1016/j.foreco.2007.04.008

    Article  Google Scholar 

  • Serrano L, Reina M, Arechederra A, Casco MA, Toja J (2004) Limnological description of the Tarelo lagoon (SW Spain). Limnetica 23:1–10

    Article  Google Scholar 

  • Sevindik TO, Çelik K, Naselli-Flores L (2017) Spatial heterogeneity and seasonal succession of phytoplankton functional groups along the vertical gradient in a mesotrophic reservoir. Ann Limnol-Int J Lim 53:129–141. https://doi.org/10.1051/limn/2016040

    Article  Google Scholar 

  • Sezgin E (2015) Trakya’daki Lagüner Göllerin Gastropod (Gastropoda: Mollusca) Faunası. Dissertation, Trakya Üniversitesi Fen Bilimleri Enstitüsü, Edirne (in Turkish)

  • Shalby A, Elshemy M, Zeidan BA (2021) Modeling of climate change impacts on Lake Burullus, coastal lagoon (Egypt). Int J Sediment Res 36(6):756–769. https://doi.org/10.1016/j.ijsrc.2019.12.006

    Article  Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shikata T, Nagasoe S, Oh SJ et al (2008) Effects of down-and up-shocks from rapid changes of salinity on survival and growth of estuarine phytoplankters. J Fac Agric Kyushu Univ 53:81–87. https://doi.org/10.5109/10075

    Article  Google Scholar 

  • Sims PA (1996) An Atlas of Britih Diatoms. BioPress Ltd, London

    Google Scholar 

  • Sournia A (1986) Atlas Du Phytoplankton Marine. Volume I: introduction, Cyanophycées, Dictyochophycées, Dinophycées et Raphidophycées. Centre National de la Recherche Scientifique, Paris

    Google Scholar 

  • Specchiulli A, Focardi S, Renzi M, Scirocco T, Cilenti L, Breber P, Bastianoni S (2008) Environmental heterogeneity patterns and assessment of trophic levels in two Mediterranean lagoons: Orbetello and Varano, Italy. Sci Total Environ 402:285–298. https://doi.org/10.1016/j.scitotenv.2008.04.052

    Article  CAS  PubMed  Google Scholar 

  • Srichandan S, Baliarsingh SK, Prakash S, Lotliker AA, Parida C, Sahu KC (2019) Seasonal dynamics of phytoplankton in response to environmental variables in contrasting coastal ecosystems. Environ Sci Pollut Res 26(12):12025–12041. https://doi.org/10.1007/s11356-019-04569-5

    Article  CAS  Google Scholar 

  • Srichandan S, Kim JY, Bhadury P, Barik SK, Muduli PR, Samal RN, Pattnaik AK, Rastogi G (2015) Spatiotemporal distribution and composition of phytoplankton assemblages in a coastal tropical lagoon: Chilika, India. Environ Monit Assess 187(2):1–17. https://doi.org/10.1007/s10661-014-4212-9

    Article  CAS  Google Scholar 

  • Srichandan S, Rastogi G (2020) Spatiotemporal assessment of phytoplankton communities in the Chilika lagoon. In: Finlayson C, Rastogi G, Mishra D, Pattnaik A (eds) Ecology, Conservation, and restoration of Chilika Lagoon, India. Wetlands: Ecology, Conservation and Management, vol 6. Springer, Cham, pp 251–294

    Chapter  Google Scholar 

  • Sun J, Liu D (2003) Geometric models for calculating cell Biovolume and Surface Area for Phytoplankton. J Plankton Res 25(11):1331–1346. https://doi.org/10.1093/plankt/fbg096

    Article  Google Scholar 

  • Tagliarolo M, Scharler UM (2018) Spatial and temporal variability of carbon budgets of shallow South African subtropical estuaries. Sci Total Environ 626:915–926. https://doi.org/10.1016/j.scitotenv.2018.01.166

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar L, Kim JY, Srichandan S et al (2021) Responses of phytoplankton community structure and association to variability in environmental drivers in a tropical coastal lagoon. Sci Total Environ 783:146873. https://doi.org/10.1016/j.scitotenv.2021.146873

    Article  CAS  PubMed  Google Scholar 

  • Telesh IV, Khlebovich VV (2010) Principal processes within the estuarine salinity gradient: a review. Mar Pollut Bullet 61:149–155. https://doi.org/10.1016/j.marpolbul.2010.02.008

    Article  CAS  Google Scholar 

  • Temel M (2002) The phytoplankton of lake Buyukcekmece, Istanbul, Turkey. Pak J Bot 34(1):81–92

    Google Scholar 

  • Ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

  • Throndsen J (1997) The planktonic marine flagellates. In: Tomas CR (ed) Identifying Marine Phytoplankton. Academic Press, San Diego, pp 591–729

    Chapter  Google Scholar 

  • Tolun L, Telli-Karakoc F, Henkelmann B, Schramm KW, Okay OS (2008) Pcb pollution of Izmit bay (Marmara Sea) mussels after the earthquake. In: Mehmetli E, Koumanova B (eds) The Fate of Persistent Organic pollutants in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6642-9_10

    Chapter  Google Scholar 

  • Trégouboff G, Rose M (1957) Manuel De Planctonologie Méditerranéenne, I, II. Centre National de la Recherche Scientifique, Paris

    Google Scholar 

  • Tyler MA, Seliger HH (1981) Selection for a red tide organism: physiological responses to the physical environment. Limnol Oceanogr 26(2):310–324. https://doi.org/10.4319/lo.1981.26.2.0310

    Article  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung Der Quantitativen Phytoplankton-Methodik. Mitt Int Ver Limnol 5:567–596

  • Uzun M (2014) Hersek Deltasında (Yalova) Kıyı Çizgisi-Kıyı Alanı Değişimleri ve Etkileri. Doğu Coğrafya Dergisi 19(32):27–48 (in Turkish)

    Article  Google Scholar 

  • Van Bergeijk SA, Van der Zee C, Stal LJ (2003) Uptake and excretion of dimethylsulphoniopropionate is driven by salinity changes in the marine benthic diatom Cylindrotheca closterium. Eur J Phycol 38(4):341–349. https://doi.org/10.1080/09670260310001612600

    Article  CAS  Google Scholar 

  • Wang N, Xiong J, Wang X et al (2018) Relationship between phytoplankton community and environmental factors in landscape water with high salinity in a coastal city of China. Environ Sci Pollut Res 25:28460–28470. https://doi.org/10.1007/s11356-018-2886-1

    Article  CAS  Google Scholar 

  • Woolway RI, Kraemer BM, Lenters JD, Merchant CJ, O’Reilly CM, Sharma S (2020) Global lake responses to climate change. Nat Rev Earth Environ 1(8):388–403. https://doi.org/10.1038/s43017-020-0067-5

    Article  Google Scholar 

  • Yilmaz N (2015) Diversity of phytoplankton in Kucukcekmece Lagoon channel, Turkey. Maejo Int J Sci Technol 9(1):32–42

    CAS  Google Scholar 

  • Yilmaz N (2019) Water quality assessment based on the phytoplankton composition of Buyukcekmece Dam Lake and its influent streams (Istanbul), Turkey. Desalin Water Treat 159:3–12. https://doi.org/10.5004/dwt.2019.23994

    Article  CAS  Google Scholar 

  • Yilmaz N, Gülecal Y (2012) Phytoplankton community of Terkos Lake and its influent streams, Istanbul, Turkey. Pak J Bot 44(3):1135–1140

    Google Scholar 

  • Yilmaz N, Özyiğit İİ, Dogan I, Demir G, Yalcin I (2021a) A case study performed in Kucukcekmece Lagoon channel/Istanbul, Turkey: how the heavy metal contamination and the seasonal variations on phytoplankton composition influence water quality. Desalin Water Treat 239:126–136. https://doi.org/10.5004/dwt.2021.27817

    Article  CAS  Google Scholar 

  • Yilmaz N, Ozyigit II, Demir HH, Yalcin IE (2021b) Assessment on phytoplankton composition and heavy metal pollution in a drinking water resource: Lake Terkos (Istanbul, Turkey). Desalin Water Treat 225:265–274. https://doi.org/10.5004/dwt.2021.27221

    Article  CAS  Google Scholar 

  • Youngman RE (1978) The measurement of Chlorophyll. Water Research Centre, U.K, Medmenham

    Google Scholar 

  • Yue L, Kong W, Ji M, Liu J, Morgan-Kiss RM (2019) Community response of microbial primary producers to salinity is primarily driven by nutrients in lakes. Sci Total Environ 696:134001. https://doi.org/10.1016/j.scitotenv.2019.134001

    Article  CAS  PubMed  Google Scholar 

  • Zainol Z, Akhir MF (2019) Temporal variability of phytoplankton biomass in relation to salinity and nutrients in a shallow coastal lagoon. Malaysian J Anal Sci 23:1090–1106. https://doi.org/10.17576/mjas-2019-2306-16

    Article  Google Scholar 

  • Zhang JY, Ni WM, Zhu YM, Pan YD (2013) Effects of different nitrogen species on sensitivity and photosynthetic stress of three common freshwater diatoms. Aquat Ecol 47(1):25–35. https://doi.org/10.1007/s10452-012-9422-z

    Article  CAS  Google Scholar 

  • Zhong ZP, Liu Y, Miao LL, Wang F, Chu LM, Wang JL, Liu ZP (2016) Prokaryotic community structure driven by salinity and ionic concentrations in plateau lakes of the Tibetan Plateau. Appl Environ Microb 82(6):1846–1858. https://doi.org/10.1128/AEM.03332-15

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the General Directorate of State Hydraulic Works in the frame of “Water Quality Monitoring of the Marmara Basin” during 2020 and 2022. The authors thank to General Directorate of State Hydraulic Works Investing, Planning and Allocations Department, Environmental Section Managers, Sakarya University Phytoplankton R&D Laboratory, Kocaeli University Hydrobiology R&D Laboratory, and ÇEVSİS R&D for their valuable support during the sampling and analysis procedure.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Hatice Tunca conducted the field sampling, identified and counted the phytoplankton, and analyzed the data. Tuğba Ongun Sevi̇ndi̇k designed the experiments, analyzed the data, and wrote the text. Halim Aytekin Ergül participated in project management, designed the experiments, and conducted the field sampling. Mert Kaya prepared the samples for counting, help the qualitative analyses of samples using a light microscope. Melih Kayal and Fatih Ekmekçi̇ conducted the field studies, Oltan Canli and Barış Güzel menaged the field measurements and laboratory analysis of environmental parameters.

Corresponding author

Correspondence to Tuğba Ongun Sevi̇ndi̇k.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunca, H., Ongun Sevi̇ndi̇k, T., Ergül, H.A. et al. The effects of salinity on phytoplankton community structure in the 6 lagoons of the Marmara Basin (Türkiye). Biologia (2024). https://doi.org/10.1007/s11756-024-01612-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11756-024-01612-w

Keywords

Navigation