Skip to main content
Log in

Regularized optimization methods for convex MINLP problems

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

We propose regularized cutting-plane methods for solving mixed-integer nonlinear programming problems with nonsmooth convex objective and constraint functions. The given methods iteratively search for trial points in certain localizer sets, constructed by employing linearizations of the involved functions. New trial points can be chosen in several ways; for instance, by minimizing a regularized cutting-plane model if functions are costly. When dealing with hard-to-evaluate functions, the goal is to solve the optimization problem by performing as few function evaluations as possible. Numerical experiments comparing the proposed algorithms with classical methods in this area show the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The notation \(f^+\) stands for \(f^+(x)=\max \{f(x),0\}\).

References

  • Arnold T, Henrion R, Moller A, Vigerske US (2014) A mixed-integer stochastic nonlinear optimization problem with joint probabilistic constraints. Pac J Optim 10:5–20

    Google Scholar 

  • Belotti P, Kirches C, Leyffer S, Linderoth J, Luedtke J, Mahajan A (2013) Mixed-integer nonlinear optimization. Acta Numer 22:1–131

    Article  Google Scholar 

  • Ben Amor H, Desrosiers J, Frangioni A (2009) On the choice of explicit stabilizing terms in column generation. Discret Appl Math 157:1167–1184

    Article  Google Scholar 

  • Bonami P, Biegler LT, Conn AR, Cornuéjols G, Grossmann IE, Laird CD, Lee J, Lodi A, Margot F, Sawaya N, WäChter A (2008) An algorithmic framework for convex mixed integer nonlinear programs. Discret Optim 5:186–204

    Article  Google Scholar 

  • Bonami P, Biegler LT, Conn AR, Cornuéjols G, Grossmann IE, Laird CD, Lee J, Lodi A, Margot F, Sawaya N, Wächter A (2008) An algorithmic framework for convex mixed integer nonlinear programs. Discret Optim 5:186–204 (In Memory of George B. Dantzig)

    Article  Google Scholar 

  • Bruno SV, Moraes LA, de Oliveira W (2015) Optimization techniques for the Brazilian natural gas network planning problem. Energy Syst:1–21

  • Currie J, Wilson DI (2012) OPTI: lowering the barrier between open source optimizers and the Industrial MATLAB User. In: Sahinidis N, Pinto J (eds) Foundations of Computer-Aided Process Operations. Savannah, Georgia, pp 8–11

  • D’Ambrosio C, Frangioni A, Liberti L, Lodi A (2010) On interval-subgradient and no-good cuts. Oper Res Lett 38:341–345

    Article  Google Scholar 

  • de Oliveira W, Sagastizábal C (2014) Bundle methods in the xxist century: a birds’-eye view. Pesquisa Oper 34:647–670

    Article  Google Scholar 

  • de Oliveira W, Solodov M (2016) A doubly stabilized bundle method for nonsmooth convex optimization. Math Program 156(1):125–159

    Article  Google Scholar 

  • Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91:201–213

    Article  Google Scholar 

  • Duran M, Grossmann IE (1986) An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Program 36:307–339

    Article  Google Scholar 

  • Eronen V-P, Makela MM, Westerlund T (2014) On the generalization of ecp and oa methods to nonsmooth convex minlp problems. Optimization 63:1057–1073

    Article  Google Scholar 

  • Fletcher R, Leyffer S (1994) Solving mixed integer nonlinear programs by outer approximation. Math Program 66:327–349

    Article  Google Scholar 

  • Frangioni A, Gentile C (2006) Perspective cuts for a class of convex 0-1 mixed integer programs. Math Program 106:225–236

    Article  Google Scholar 

  • Geoffrion A (1972) Generalized benders decomposition. J Optim Theory Appl 10:237–260

    Article  Google Scholar 

  • Grossmann IE (2002) Review of nonlinear mixed-integer and disjunctive programming techniques. Optim Eng 3:227–252

    Article  Google Scholar 

  • Hemmecke R, Kppe M, Lee J, Weismantel R (2010) Nonlinear integer programming. In: Jnger M, Liebling TM, Naddef D, Nemhauser GL, Pulleyblank WR, Reinelt G, Rinaldi G, Wolsey LA (eds) 50 Years of Integer Programming 1958–2008. Springer, Berlin, Heidelberg, pp 561–618

    Google Scholar 

  • Kelley J Jr (1960) The cutting-plane method for solving convex programs. J Soc Ind Appl Math 8:703–712

    Article  Google Scholar 

  • Kiwiel K, Lemaréchal C (2009) An inexact bundle variant suited to column generation. Math Program 118:177–206

    Article  Google Scholar 

  • Lemaréchal C, Nemirovskii A, Nesterov Y (1995) New variants of bundle methods. Math Program 69:111–147

    Article  Google Scholar 

  • Leyffer S (1998) Integrating sqp and branch-and-bound for mixed integer nonlinear programming. Comput Optim Appl 18:295–309

    Article  Google Scholar 

  • Lubin M, Martin K, Petra CG, Sandiki B (2013) On parallelizing dual decomposition in stochastic integer programming. Oper Res Lett 41:252–258

    Article  Google Scholar 

  • Mayer J (2000) On the numerical solution of jointly chance constrained problems. Chapter 12 in [31], 1st edn. Springer, New York

  • Munari P, Gondzio J (2013) Using the primal-dual interior point algorithm within the branch-price-and-cut method. Comput Oper Res 40:2026–2036

    Article  Google Scholar 

  • Quesada I, Grossmann I (1992) An lp/nlp based branch and bound algorithm for convex minlp optimization problems. Comput Chem Eng 16:937–947

    Article  Google Scholar 

  • Sagastizábal C (2012) Divide to conquer: decomposition methods for energy optimization. Math Program 134:187–222

    Article  Google Scholar 

  • Schütz P, Tomasgard A, Ahmed S (2009) Supply chain design under uncertainty using sample average approximation and dual decomposition. Eur J Oper Res 199:409–419

    Article  Google Scholar 

  • Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on stochastic programming: modeling and theory, MPS-SIAM series on optimization, SIAM—Society for Industrial and Applied Mathematics and Mathematical Programming Society. Philadelphia

  • Stubbs RA, Mehrotra S (1999) A branch-and-cut method for 0–1 mixed convex programming. Math Program 86:515–532

    Article  Google Scholar 

  • Uryas’ev S (ed) (2000) Probabilistic constrained optimization: methodology and applications. Kluwer Academic Publishers, Berlin

  • van Ackooij W, de Oliveira W (2014) Level bundle methods for constrained convex optimization with various oracles. Comput Optim Appl 57:555–597

    Article  Google Scholar 

  • van Ackooij W, Minoux M (2015) A characterization of the subdifferential of singular gaussian distribution functions. Set Valued Var Anal 23:465–483

    Article  Google Scholar 

  • Westerlund T, Lundqvist K (2005) Alpha-ecp, version 5.101: an interactive minlp-solver based on the extended cutting plane method, Tech. Report 01-178-A, Process Design Laboratory at Abo Akademi University. Updated version of 2005-10-21. http://www.abo.fi/~twesterl/A-ECPManual

  • Westerlund T, Pettersson F (1995) An extended cutting plane method for solving convex minlp problems. Comput Chem Eng 19(Supplement 1):131–136 (European Symposium on Computer Aided Process Engineering)

  • Westerlund T, Pörn R (2002) Solving pseudo-convex mixed integer optimization problems by cutting plane techniques. Optim Eng 3:253–280

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges financial support provided by Severo Ochoa Program SEV-2013-0323 and Basque Government BERC Program 2014-2017. The author also thanks the associate editor and two anonymous referees for their constructive suggestions that considerably improved the original version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Welington de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, W. Regularized optimization methods for convex MINLP problems. TOP 24, 665–692 (2016). https://doi.org/10.1007/s11750-016-0413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-016-0413-4

Keywords

Mathematics Subject Classification

Navigation