Skip to main content
Log in

Generalized three-sided assignment markets: core consistency and competitive prices

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

A generalization of the classical three-sided assignment market is considered, where value is generated by pairs or triplets of agents belonging to different sectors, as well as by individuals. For these markets we represent the situation that arises when some agents leave the market with some payoff by means of a generalization of Owen (Ann Econ Stat 25–26:71–79, 1992) derived market. Consistency with respect to the derived market, together with singleness best and individual anti-monotonicity, axiomatically characterize the core for these generalized three-sided assignment markets. When one sector is formed by buyers and the other by two different type of sellers, we show that the core coincides with the set of competitive equilibrium payoff vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A game is a pair formed by a finite set of players N and a characteristic function r that assigns a real number r(S) to each coalition \(S\subseteq N\), with \(r(\emptyset )=0\). The core of a coalitional game (Nr) is \(C(r)=\{x\in {\mathbb {R}}^N\mid \sum _{i\in N}x_i=r(N), \sum _{i\in S}x_i\ge r(S)\; \text { for all } S\subseteq N\}\). A game is balanced if it has a non-empty core.

    A game is said to be superadditive if for any two disjoint coalitions \(S,T\subseteq N\), \(S\cap T =\emptyset \), it holds \(r(S\cup T)\ge r(S)+r(T)\).

  2. Given a game (Nr), the excess of a coalition \(S\subseteq N\) at a payoff vector \(x\in {\mathbb {R}}^{N}\) is \(r(S)-\sum \nolimits _{i\in S}x_{i}\).

  3. See Quint (1991a) for a characterization of the non-emptiness of the core of games in partition form in terms of the solutions of the linear program that provides an optimal matching.

References

  • Davis M, Maschler M (1965) The kernel of a cooperative game. Naval Res Logist Q 12:223–259

    Article  Google Scholar 

  • Gale D (1960) The theory of linear economic models. McGraw-Hill, New York

    Google Scholar 

  • Hwang YA, Sudhölter P (2001) Axiomatizations of the core on the universal domain and other natural domains. Int J Game Theory 29:597–623

    Article  Google Scholar 

  • Kaneko M, Wooders M (1982) Cores of partitioning games. Math Soc Sci 3:313–327

    Article  Google Scholar 

  • Keiding H (1986) An axiomatization of the core of a cooperative game. Econ Lett 20:111–115

    Article  Google Scholar 

  • Llerena F, Núñez M, Rafels C (2015) An axiomatic characterization of the nucleolus of the assignment market. Int J Game Theory 44:1–15

    Article  Google Scholar 

  • Miquel S, Núñez M (2011) The maximum and the addition of assignment games. TOP 19:189–212

    Article  Google Scholar 

  • Owen G (1992) The assignmen game: the reduced game. Ann Econ Stat 25–26:71–79

    Google Scholar 

  • Peleg B (1986) On the reduced game property and its converse. Int J Game Theory 15:187–200

    Article  Google Scholar 

  • Potters B (1991) An axiomatization of the nucleolus. Int J Game Theory 19:365–373

    Article  Google Scholar 

  • Quint T (1991a) Necessary and sufficient conditions for balancedness in partitioning games. Math Soc Sci 22:87–91

  • Quint T (1991b) The core of a \(m\)-sided assignment game. Games Econ Behav 3:487–503

  • Sasaki H (1995) Consistency and monotonicity in assignment problems. Int J Game Theory 24:373–397

    Article  Google Scholar 

  • Schmeidler D (1969) The nucleolus of a characteristic function game. SIAM J Appl Math 17:1163–1170

    Article  Google Scholar 

  • Shapley L, Shubik M (1972) The assignment game I: the core. Int J Game Theory 1:111–130

    Article  Google Scholar 

  • Stuart H (1997) The supplier-firm-buyer game and its \(m\)-sided generalization. Math Soc Sci 34:21–27

    Article  Google Scholar 

  • Tejada O (2010) A note on competitive prices in multilateral assignment markets. Econ. Bull. 30:658–662

    Google Scholar 

  • Tejada O (2013) Complements and substitutes in generalized multisided assignment economies. Oper. Res. Lett. 41:468–473

    Article  Google Scholar 

  • Toda M (2003) Consistency and its converse in assignment games. Int. J. Math. Game Theory Algebra 13:1–14

    Google Scholar 

  • Toda M (2005) Axiomatization of the core of assignment games. Games Econ Behav 53:248–261

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank two anonymous referees for their useful comments and suggestions. The authors acknowledge the support from research Grant ECO2014-52340-P (Ministerio de Economía y Competitividad), 2014SGR40 and 2014SGR631 (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ata Atay.

Appendix

Appendix

Proof of Proposition 2

Let us write \({\hat{w}}=w_{{\hat{\gamma }}^{S,x}}\). We have to show that \({\hat{w}}\) is superadditive, \({\hat{w}}\ge w_{\gamma }^{S,x}\) and \({\hat{w}}\) is minimal with these two properties.

By definition, \({\hat{w}}\) is superadditive. Now, we show that \({\hat{w}}(T)\ge w_{\gamma }^{S,x}(T)\) for all \(T\subseteq S\). Notice that, for all \(T\subseteq S\) there exists \(Q\subseteq N{\setminus } S\) such that

$$\begin{aligned} w_{\gamma }^{S,x}(T)=w_{\gamma }(T\cup Q)-\sum \limits _{l\in Q} x_{l}. \end{aligned}$$
(4)

Let \(\mu \) be a matching on \(T\cup Q\) such that \(w_{\gamma }(T\cup Q)=\sum _{E\in \mu }v(E)\). We introduce the following partition of the set of basic coalitions in \(\mu \):

$$\begin{aligned} I_{1}= & {} \{\{i,j,k\}\in \mu \mid i\in T, j\in T, k\in T\}\\ I_{2}= & {} \{\{i,j,k\}\in \mu \mid i\not \in T, j\not \in T, k\not \in T\}\\ I_{3}= & {} \{\{ i,j,k\} \in \mu \mid i\in T, j\in T, k\notin T\} \\ I_{4}= & {} \{ \{ i,j,k\} \in \mu \mid i \in T, j\notin T, k\notin T\} \\ I_{5}= & {} \{ \{ i,j\} \in \mu \mid i\in T, j\in T\} \\ I_{6}= & {} \{\{ i,j\} \in \mu \mid i\notin T, j\notin T\} \\ I_{7}= & {} \{\{ i,j\} \in \mu \mid i \in T, j\notin T\}\\ I_{8}= & {} \{\{ i\}\in \mu \mid i\in T\}. \\ I_{9}= & {} \{\{ i\}\in \mu \mid i\notin T\}. \end{aligned}$$

We write \(w_{\gamma }(T\cup Q)\) in terms of the above partition.

$$\begin{aligned} w_{\gamma }(T\cup Q)&=\sum \limits _{\{i,j,k\}\in I_{1}}v(\{ i,j,k\})+\sum \limits _{\{i,j,k\}\in I_{2}}v(\{i,j,k\})+\sum \limits _{\{i,j,k\} \in I_{3}}v(\{i,j,k\}) \nonumber \\&\quad \,\,+\sum \limits _{\{i,j,k\} \in I_{4}}v(\{i,j,k\})+\sum \limits _{\{i,j\}\in I_{5}} v(\{i,j\})+\sum \limits _{\{i,j\}\in I_{6}} v(\{i,j\})\nonumber \\&\quad \,\,+\sum \limits _{\{i,j\}\in I_{7}} v(\{i,j\})+\sum \limits _{\{i\}\in I_{8}} v(\{i\})+\sum \limits _{\{i\}\in I_{9}} v(\{i\}). \end{aligned}$$
(5)

Then, substitute (5) in Eq. (4) and distribute \(\sum \nolimits _{l\in Q}x_{l}\) among the sets of the partition.

$$\begin{aligned} w_{\gamma }^{S,x}(T)&=w_{\gamma }(T\cup Q)-\sum \limits _{i\in Q}x_{i} \\&\quad =\sum \limits _{\{i,j,k\}\in I_{1}}v(\{i,j,k\})+\sum \limits _{\{i,j,k\}\in I_{2}}v(\{i,j,k\})-x_{i}-x_{j}-x_{k} \\&\quad \,\,+\sum \limits _{\{i,j,k\}\in I_{3}}v(\{i,j,k\})-x_{k} +\sum \limits _{\{i,j,k\}\in I_{4}}v(\{i,j,k\})-x_{j}-x_{k}\\&\quad \,\,+\sum \limits _{\{i,j\}\in I_{5}}v(\{i,j\})+\sum \limits _{\{i,j\}\in I_{6}}v(\{i,j\})-x_{i}-x_{j}+\sum \limits _{\{i,j\}\in I_{7}}v(\{i,j\})-x_{j}\\&\quad \,\,+\sum \limits _{\{i\}\in I_{8}}v(\{i\})+\sum \limits _{\{i\}\in I_{9}}v(\{i\})-x_{i}. \end{aligned}$$

Since \(x\in C(\gamma )\), the second, the sixth and the last term are non-positive.

Let us consider \({\hat{v}}={\hat{v}}^{S,x}\) (see Definition 3). For all \(t,r,s\in \{1,2,3\}\) such that \(r\ne s\), \(r\ne t\), \(s\ne t\) and all \(i\in M_{r}\cap T\), \(j\in M_{s}\cap T\),

$$\begin{aligned} {\hat{v}}(\{i,j\})=\max \limits _{k\in Q\cap M_{t}}\{v(\{i,j,k\})-x_{k},v(\{i,j\})\}. \end{aligned}$$

As a consequence, for all \(\{i,j,k\}\in I_{3}\), \(v(\{i,j,k\})-x_{k}\le {\hat{v}}(\{i,j\})\) and for all \(\{i,j\}\in I_{5}\), \(v(\{i,j\})\le {\hat{v}}(\{i,j\})\).

Also, for all \(t\in \{1,2,3\}\) and \(l\in M_{t}\cap T\), if rs are such that \(r\ne s\), \(s\ne t\) and \(t\ne r\), then,

$$\begin{aligned} {\hat{v}}(\{l\})=\max \limits _{\begin{array}{c} i \in M_{r}\cap Q \\ j\in M_{s}\cap Q \end{array}}\{v(\{i,j,l\})-x_{i}-x_{j},v(\{i,l\})-x_{i},v(\{j,l\})-x_{j}, v(\{l\})\}. \end{aligned}$$

As a consequence, for all \(\{i,j,k\}\in I_{4}\), \(v(\{i,j,k\})-x_{j}-x_{k}\le {\hat{v}}(\{i\})\); for all \(\{i,j\}\in I_{7}\), \(v(\{i,j\})-x_{j}\le {\hat{v}}(\{i\})\) and trivially \(v(\{i\})\le {\hat{v}}(\{i\})\) for all \(\{i\}\in I_{8}\).

To sum up, taking into account that \({\hat{w}}\) is superadditive by definition,

$$\begin{aligned} w_{\gamma }^{S,x}(T)\le \sum \limits _{\{i,j,k\}\in I_{1}}{\hat{v}}(\{i,j,k\})+\sum \limits _{\begin{array}{c} \{i,j,k\}\in I_{3} \\ \{i,j\} \in I_{5} \end{array}}{\hat{v}}(\{i,j\})+\sum \limits _{\begin{array}{c} \{i,j,k\} \in I_{4} \\ \{i,j\} \in I_{7} \\ \{i\}\in I_{8} \end{array}}{\hat{v}}(\{i\}) \le {\hat{w}}(T). \end{aligned}$$

Now, we only need to show that \({\hat{w}}\) is the minimal superadditive game satisfying the above inequality. First, consider \(\{k\}\in {\mathcal {B}}^{S}\). Then,

$$\begin{aligned} w_{\gamma }^{S,x}(\{k\})&=\max \limits _{Q\subseteq N{\setminus } S}\{w_{\gamma }(\{k\}\cup Q)-x(Q)\} \nonumber \\&\ge \max \limits _{\begin{array}{c} Q\subseteq N{\setminus } S \\ \{k\}\cup Q\in {\mathcal {B}} \end{array}}\{w_{\gamma }(\{k\}\cup Q)-x(Q)\} \nonumber \\&\ge \max \limits _{\begin{array}{c} Q\subseteq N{\setminus } S \\ \{k\}\cup Q\in {\mathcal {B}} \end{array}}\{v(\{k\}\cup Q)-x(Q)\} \nonumber \\&={\hat{v}}(\{k\}). \end{aligned}$$
(6)

Similarly, we obtain

$$\begin{aligned} w_{\gamma }^{S,x}\{i,j\}\ge & {} {\hat{v}}(\{i,j\})\quad \text{ for } \text{ all } \{i,j\}\in {\mathcal {B}}^{S},\end{aligned}$$
(7)
$$\begin{aligned} w_{\gamma }^{S,x}(\{i,j,k\})\ge & {} {\hat{v}}(\{i,j,k\}) \quad \text{ for } \text{ all } \{i,j,k\}\in {\mathcal {B}}^{S}. \end{aligned}$$
(8)

Assume now (Nw) is superadditive and \(w\ge w_{\gamma }^{S,x}\). For all \(T\subseteq S\), let \(\mu \) be an optimal matching for \({\hat{\gamma }}^{S,x}_{\mid T}\). Then,

$$\begin{aligned} w(T)&\ge \sum \limits _{\{i,j,k\}\in \mu } w(\{i,j,k\})+\sum \limits _{\{i,j\}\in \mu } w(\{i,j\})+\sum \limits _{\{k\}\in \mu } w(\{k\}) \\&\ge \sum \limits _{\{i,j,k\}\in \mu } w_{\gamma }^{S,x}(\{i,j,k\})+\sum \limits _{\{i,j\}\in \mu } w_{\gamma }^{S,x}(\{i,j\})+\sum \limits _{\{ k\}\in \mu } w_{\gamma }^{S,x}(\{k\}) \\&\ge \sum \limits _{\{i,j,k\}\in \mu }{\hat{v}}(\{i,j,k\})+\sum \limits _{\{i,j\}\in \mu } {\hat{v}}(\{i,j\})+\sum \limits _{\{k\}\in \mu }{\hat{v}}(\{k\}) \\&={\hat{w}}(T), \end{aligned}$$

where the last inequality follows from (6) to (8).

This shows that \({\hat{w}}\) is the minimal superadditive game such that \({\hat{w}}\ge w_{\gamma }^{S,x}\), which implies that \({\hat{w}}\) is the superadditive cover of \(w_{\gamma }^{S,x}\). \(\square \)

Proof of Lemma 1

In order to see this, we need to show that if \((p,\mu )\) is a competitive equilibrium, then the matching \(\mu \) is a partition of maximal value. Consider a competitive equilibrium \((p,\mu )\) and another matching \(\mu '\in {\mathcal {M}}(M_{1},M_{2},M_{3})\). Then,

$$\begin{aligned}&\sum \limits _{E\in \mu }v^{w,c}(E)=\sum \limits _{k\in M_{3}}w^{k}(\mu (k))-c(\mu (k){\setminus }\{k\})\\&\quad \ge \sum \limits _{k\in M_{3}}w^{k}(\mu '(k))-c(\mu (k){\setminus }\{k\})-p(\mu '(k){\setminus }\{k\})+p(\mu (k){\setminus }\{k\})\\&\quad =\sum \limits _{k\in M_{3}}w^{k}(\mu '(k))-c(\mu (k){\setminus }\{k\})-p\left( \bigcup _{k\in M_3}\mu '(k){\setminus } M_3\right) \\&\qquad +p\left( \bigcup _{k\in M_3}\mu (k){\setminus } M_3\right) \\&\quad =\sum \limits _{k\in M_{3}}w^{k}(\mu '(k))-c\left( \bigcup _{k\in M_3}\mu (k){\setminus } M_3\right) \\&\qquad -p\left( \left( \bigcup _{k\in M_3}\mu '(k){{\setminus }}\bigcup _{k\in M_3}\mu (k)\right) {\setminus } M_3\right) \\&\qquad + p\left( \left( \bigcup _{k\in M_3}\mu (k){\setminus }\bigcup _{k\in M_3}\mu '(k)\right) {\setminus } M_3\right) \\&\quad =\sum \limits _{k\in M_{3}}w^{k}(\mu '(k))-c\left( \bigcup _{k\in M_3}\mu (k){\setminus } M_3\right) \\&\qquad -c\left( \left( \bigcup _{k\in M_3}\mu '(k){\setminus }\bigcup _{k\in M_3}\mu (k)\right) {\setminus } M_3\right) \\&\qquad + p\left( \left( \bigcup _{k\in M_3}\mu (k){\setminus }\bigcup _{k\in M_3}\mu '(k)\right) {\setminus } M_3\right) \\&\quad =\sum \limits _{k\in M_{3}}w^{k}(\mu '(k))\\&\qquad -c\left( \bigcup _{k\in M_3}\mu '(k){\setminus } M_3\right) -c\left( \left( \bigcup _{k\in M_3}\mu (k){\setminus }\bigcup _{k\in M_3}\mu '(k)\right) {\setminus } M_3\right) \\&\qquad + p\left( \left( \bigcup _{k\in M_3}\mu (k){\setminus }\bigcup _{k\in M_3}\mu '(k)\right) {\setminus } M_3\right) \\&\quad \ge \sum \limits _{k\in M_{3}}w^{k}(\mu '(k))-c(\mu '(k){\setminus }\{k\})=\sum \limits _{E\in \mu '}v^{w,c}(E), \end{aligned}$$

where the first inequality follows from the definition of the demand set and the fact that \((p,\mu )\) is a competitive equilibrium: \(w^{k}(\mu (k))\ge w^{k}(\mu '(k))-p(\mu '(k){\setminus }\{k\})+p(\mu (k){\setminus }\{k\})\). The fourth equality follows from the fact that for all \(l\in (\bigcup _{k\in M_3}\mu '(k){\setminus } \bigcup _{k\in M_3}\mu (k)){\setminus } M_3\), \(p_{l}=c_{l}\), and the last inequality follows from the feasibility of the price vector p. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atay, A., Llerena, F. & Núñez, M. Generalized three-sided assignment markets: core consistency and competitive prices. TOP 24, 572–593 (2016). https://doi.org/10.1007/s11750-016-0409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-016-0409-0

Keywords

Mathematics Subject Classification

Navigation