Skip to main content
Log in

Censored linear model in high dimensions

Penalised linear regression on high-dimensional data with left-censored response variable

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

Censored data are quite common in statistics and have been studied in depth in the last years [for some references, see Powell (J Econom 25(3):303–325, 1984), Murphy et al. (Math Methods Stat 8(3):407–425, 1999), Chay and Powell (J Econ Perspect 15(4):29–42, 2001)]. In this paper, we consider censored high-dimensional data. High-dimensional models are in some way more complex than their low-dimensional versions, therefore some different techniques are required. For the linear case, appropriate estimators based on penalised regression have been developed in the last years [see for example Bickel et al. (Ann Stat 37(4):1705–1732, 2009), Koltchinskii (Bernoulli 15:799–828, 2009)]. In particular, in sparse contexts, the \(l_1\)-penalised regression (also known as LASSO) [see Tibshirani (J R Stat Soc Ser B 58:267–288, 1996), Bühlmann and van de Geer (Statistics for high-dimensional data. Springer, Heidelberg, 2011) and reference therein] performs very well. Only few theoretical work was done to analyse censored linear models in a high-dimensional context. We therefore consider a high-dimensional censored linear model, where the response variable is left censored. We propose a new estimator, which aims to work with high-dimensional linear censored data. Theoretical non-asymptotic oracle inequalities are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Belloni A, Chernozhukov V (2011) \(\ell _1\)-Penalized quantile regression in high-dimensional sparse models. Ann Stat 39(1):82–130

    Article  MathSciNet  MATH  Google Scholar 

  • Bickel PJ, Ritov Y, Tsybakov AB (2009) Simultaneous analysis of lasso and dantzig selector. Ann Stat 37(4):1705–1732

    Article  MathSciNet  MATH  Google Scholar 

  • Bühlmann P, van de Geer S (2011) Statistics for high-dimensional data. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Candes E, Tao T (2007) The dantzig selector: statistical estimation when p is much larger than n. Ann Stat 35:2313–2351

    Article  MathSciNet  MATH  Google Scholar 

  • Chay KY, Powell JL (2001) Semiparametric censored regression models. J Econ Perspect 15(4):29–42

    Article  Google Scholar 

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3):432–441

    Article  MATH  Google Scholar 

  • Koltchinskii V (2009) The Dantzig selector and sparsity oracle inequalities. Bernoulli 15:799–828

    Article  MathSciNet  MATH  Google Scholar 

  • Koltchinskii V (2011) Oracle inequalities in empirical risk minimization and sparse recovery problems: École dÉté de Probabilités de Saint-Flour XXXVIII-2008, vol 2033. Springer, Berlin

    Google Scholar 

  • Li Y, Zhu J (2008) L1-Norm quantile regression. J Comput Graph Stat 17(1):163–185

    Article  Google Scholar 

  • Murphy SA, van der Vaart AW, Wellner JA (1999) Current status regression. Math Methods Stat 8(3):407–425

    MATH  Google Scholar 

  • Powell JL (1984) Least absolute deviations estimation for the censored regression model. J Econom 25(3):303–325

    Article  MATH  Google Scholar 

  • Städler N, Bühlmann P, van de Geer S (2010) \(l_1\)-Penalization for mixture regression models. Test 19:209–285

    Article  MathSciNet  MATH  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58:267–288

    MathSciNet  MATH  Google Scholar 

  • van de Geer S (2000) Empirical processes in M-estimation. Cambridge University Press, Cambridge

    Google Scholar 

  • van de Geer S (2003) Adaptive quantile regression. In: Akritas MG, Politis DN (eds) Recent trends in nonparametric statistics. Elsevier Science, Amsterdam, pp 235–250

    Chapter  Google Scholar 

  • van de Geer S (2007) The deterministic Lasso. In: JSM Proceedings, 2007, vol 140. American Statistical Association

  • van de Geer S (2008) High-dimensional generalized linear model and the Lasso. Ann Stat 32(2):614–645

    Article  MathSciNet  Google Scholar 

  • van de Geer S, Bühlmann P (2009) On the conditions used to prove oracle results for the Lasso. Electron J Stat 3:1360–1392

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc: Ser B (Stat Methodol) 68(1):49–67

    Article  MathSciNet  MATH  Google Scholar 

  • Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101(476):1418–1429

    Article  MATH  Google Scholar 

  • Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B 67:301–320

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patric Müller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, P., van de Geer, S. Censored linear model in high dimensions. TEST 25, 75–92 (2016). https://doi.org/10.1007/s11749-015-0441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-015-0441-7

Keywords

Mathematics Subject Classification

Navigation