Skip to main content

Advertisement

Log in

Current strategies of spinal cord protection during thoracoabdominal aortic surgery

  • Current Topics Review Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Despite improved survival rates after thoracoabdominal aortic aneurysm repairs, paraplegia remains a devastating complication with high incidence, ranging from 3 to 10%. Ischemic insults to the spinal cord are unavoidable during thoracoabdominal aortic aneurysm repairs. There is no single measure that can prevent paraplegia alone. A multimodality approach is required to minimize the ischemic insults during thoracoabdominal aortic aneurysm repairs and postoperative second hit to the spinal cord. Distal aortic perfusion is important to maintain the collateral network perfusion pressure, while cerebrospinal drainage allows to directly maintain the spinal cord perfusion. Reattachment of segmental arteries T8–T12 is encouraged to lower the incidence of both immediate and delayed paraplegia. Systemic arterial pressure should be maintained above 130 mmHg and cerebrospinal drainage should be continued until the second postoperative day, despite intact neurological status. In this article, we describe our current operative techniques and perioperative management in patients undergoing repairs of thoracoabdominal aortic aneurysm. A review of recent updates on spinal protection strategies is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Estrera AL, Sandhu HK, Charlton-Ouw KM, Afifi RO, Azizzadeh A, Miller CC 3rd, et al. A quarter century of organ protection in open thoracoabdominal repair. Ann Surg. 2015;262(4):660–8.

    Article  PubMed  Google Scholar 

  2. Okita Y. Fighting spinal cord complication during surgery for thoracoabdominal aortic disease. Gen Thorac Cardiovasc Surg. 2011;59(2):79–90.

    Article  PubMed  Google Scholar 

  3. Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ. Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg. 1993;17(2):357–68 (discussion 68–70).

    Article  PubMed  CAS  Google Scholar 

  4. Safi HJ, Miller CC 3rd, Huynh TT, Estrera AL, Porat EE, Winnerkvist AN, et al. Distal aortic perfusion and cerebrospinal fluid drainage for thoracoabdominal and descending thoracic aortic repair: ten years of organ protection. Ann Surg. 2003;238(3):372–80 (discussion 80–1).

    PubMed  PubMed Central  Google Scholar 

  5. Griepp RB, Griepp EB. Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: the collateral network concept. Ann Thorac Surg. 2007;83(2):S865–9 (discussion S90–2).

    Google Scholar 

  6. Etz CD, von Aspern K, Gudehus S, Luehr M, Girrbach FF, Ender J, et al. Near-infrared spectroscopy monitoring of the collateral network prior to, during, and after thoracoabdominal aortic repair: a pilot study. Eur J Vasc Endovasc Surg. 2013;46(6):651–6.

    Article  PubMed  CAS  Google Scholar 

  7. Strauch JT, Lauten A, Spielvogel D, Rinke S, Zhang N, Weisz D, et al. Mild hypothermia protects the spinal cord from ischemic injury in a chronic porcine model. Eur J Cardiothorac Surg. 2004;25(5):708–15.

    Article  PubMed  Google Scholar 

  8. Griffiths IR, Pitts LH, Crawford RA, Trench JG. Spinal cord compression and blood flow. I. The effect of raised cerebrospinal fluid pressure on spinal cord blood flow. Neurology. 1978;28(11):1145–51.

    Article  PubMed  CAS  Google Scholar 

  9. Miyamoto K, Ueno A, Wada T, Kimoto S. A new and simple method of preventing spinal cord damage following temporary occlusion of the thoracic aorta by draining the cerebrospinal fluid. J Cardiovasc Surg (Torino). 1960;1:188–97.

    CAS  Google Scholar 

  10. Estrera AL, Miller CC 3rd, Porat EE, Huynh TT, Winnerkvist A, Safi HJ. Staged repair of extensive aortic aneurysms. Ann Thorac Surg. 2002;74(5):S1803–5 (discussion S25–32).

    Article  Google Scholar 

  11. Cunningham JN Jr, Laschinger JC, Merkin HA, Nathan IM, Colvin S, Ransohoff J, et al. Measurement of spinal cord ischemia during operations upon the thoracic aorta: initial clinical experience. Ann Surg. 1982;196(3):285–96.

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Haan P, Kalkman CJ, de Mol BA, Ubags LH, Veldman DJ, Jacobs MJ. Efficacy of transcranial motor-evoked myogenic potentials to detect spinal cord ischemia during operations for thoracoabdominal aneurysms. J Thorac Cardiovasc Surg. 1997;113(1):87–100 (discussion—1).

    Article  PubMed  Google Scholar 

  13. Estrera AL, Sheinbaum R, Miller CC 3rd, Harrison R, Safi HJ. Neuromonitor-guided repair of thoracoabdominal aortic aneurysms. J Thorac Cardiovasc Surg. 2010;140(6 Suppl):S131–5. (discussion S42–S46).

    Google Scholar 

  14. Acher CW, Wynn MM. Thoracoabdominal aortic aneurysm. How we do it. Cardiovasc Surg. 1999;7(6):593–6.

    Article  PubMed  CAS  Google Scholar 

  15. Cambria RP, Clouse WD, Davison JK, Dunn PF, Corey M, Dorer D. Thoracoabdominal aneurysm repair: results with 337 operations performed over a 15-year interval. Ann Surg. 2002;236(4):471–9 (discussion 9).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Safi HJ, Hess KR, Randel M, Iliopoulos DC, Baldwin JC, Mootha RK, et al. Cerebrospinal fluid drainage and distal aortic perfusion: reducing neurologic complications in repair of thoracoabdominal aortic aneurysm types I and II. J Vasc Surg. 1996;23(2):223–8 (discussion 9).

    Article  PubMed  CAS  Google Scholar 

  17. Engle J, Safi HJ, Miller CC 3rd, Campbell MP, Harlin SA, Letsou GV, et al. The impact of diaphragm management on prolonged ventilator support after thoracoabdominal aortic repair. J Vasc Surg. 1999;29(1):150–6.

    Article  PubMed  CAS  Google Scholar 

  18. Huynh TT, Miller CC 3rd, Estrera AL, Sheinbaum R, Allen SJ, Safi HJ. Determinants of hospital length of stay after thoracoabdominal aortic aneurysm repair. J Vasc Surg. 2002;35(4):648–53.

    Article  PubMed  CAS  Google Scholar 

  19. Miller CC 3rd, Villa MA, Achouh P, Estrera AL, Azizzadeh A, Coogan SM, et al. Intraoperative skeletal muscle ischemia contributes to risk of renal dysfunction following thoracoabdominal aortic repair. Eur J Cardiothorac Surg. 2008;33(4):691–4.

    Article  PubMed  Google Scholar 

  20. Azizzadeh A, Huynh TT, Miller CC 3rd, Estrera AL, Porat EE, Sheinbaum R, et al. Postoperative risk factors for delayed neurologic deficit after thoracic and thoracoabdominal aortic aneurysm repair: a case-control study. J Vasc Surg. 2003;37(4):750–4.

    Article  PubMed  Google Scholar 

  21. Sandhu HK, Evans JD, Tanaka A, Atay S, Afifi RO, Charlton-Ouw KM, et al. Fluctuations in spinal cord perfusion pressure: a harbinger of delayed paraplegia after thoracoabdominal aortic repair. Semin Thorac Cardiovasc Surg. https://doi.org/10.1053/j.semtcvs.2017.05.007.

  22. Estrera AL, Sheinbaum R, Miller CC 3rd, Azizzadeh A, Walkes JC, Lee TY, et al. Cerebrospinal fluid drainage during thoracic aortic repair: safety and current management. Ann Thorac Surg. 2009;88:9–15.

    Article  PubMed  Google Scholar 

  23. Coady MA, Mitchell RS. Femoro-femoral partial bypass in the treatment of thoracoabdominal aneurysms. Semin Thorac Cardiovasc Surg. 2003;15:340–4.

    Article  PubMed  Google Scholar 

  24. Safi HJ, Miller CC 3rd, Subramaniam MH, Campbell MP, Iliopoulos DC, O’Donnell JJ, et al. Thoracic and thoracoabdominal aortic aneurysm repair using cardiopulmonary bypass, profound hypothermia, and circulatory arrest via left side of the chest incision. J Vasc Surg. 1998;28:591–8.

    Article  PubMed  CAS  Google Scholar 

  25. Shiiya N, Washiyama N, Tsuda K, Yamanaka K, Takahashi D, Yamashita K, et al. Japanese perspective in surgery for thoracoabdominal aortic aneurysms. Gen Thorac Cardiovasc Surg. 2017. https://doi.org/10.1007/s11748-017-0838-1.

  26. Kouchoukos NT, Masetti P, Murphy SF. Hypothermic cardiopulmonary bypass and circulatory arrest in the management of extensive thoracic and thoracoabdominal aortic aneurysms. Semin Thorac Cardiovasc Surg. 2003;15:333–9.

    Article  PubMed  Google Scholar 

  27. Omura A, Minatoya K, Matsuo J, Inoue Y, Seike Y, Uehara K, et al. Early and late outcomes of open repair for dissecting aneurysms of the descending or thoracoabdominal aorta. Interact Cardiovasc Thorac Surg. 2017;25:950–7.

    Article  Google Scholar 

  28. Corvera J, Copeland H, Blitzer D, et al. Open repair of chronic thoracic and thoracoabdominal aortic dissection using deep hypothermia and circulatory arrest. J Thorac Cardiovasc Surg. 2017;154:389–95.

    Article  PubMed  Google Scholar 

  29. Weiss AJ, Lin H-M, Bischoff MS, et al. A propensity score–matched comparison of deep versus mild hypothermia during thoracoabdominal aortic surgery. J Thoracic Cardiovasc Surg 2012;143:186–93.

    Article  Google Scholar 

  30. Sueda T, Okada K, Orihashi K, Sugawara Y, Kouchi K, Imai K. Cold blood spinal cord plegia for prediction of spinal cord ischemia during thoracoabdominal aneurysm repair. Ann Thorac Surg. 2002;73:1155–9.

    Article  PubMed  Google Scholar 

  31. Tanaka H, Minatoya K, Matsuda H, Sasaki H, Iba Y, Oda T, et al. Embolism is emerging as a major cause of spinal cord injury after descending and thoracoabdominal aortic repair with a contemporary approach: magnetic resonance findings of spinal cord injury. Interact Cardiovasc Thorac Surg. 2014;19:205–10.

    Article  PubMed  Google Scholar 

  32. Cambria RP, Cluose WD, Davidson JK, Dunn PF, Corey M, Dorer D. Thoracoabdominal aneurysm repair: results with 317 operations performed over a 15-year interval. Ann Surg. 2002;236:471–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Davison JK, Cambria RP, Vierra DJ, Columbia MA, Koustas G. Epidural cooling for regional spinal cord hypothermia during thoracoabdominal aneurysm repair. J Vasc Surg. 1994;20:304–10.

    Article  PubMed  CAS  Google Scholar 

  34. Shimizu H, Mori A, Yoshitake A, Yamada T, Morisaki H, Okano H, et al. Thoracic and thoracoabdominal aortic repair under regional spinal cord hypothermia. Eur J Cardiothorac Surg. 2014;46:40–3.

    Article  PubMed  Google Scholar 

  35. Adamkiewicz A. Die Blutgefasse des menschlichen Ruckenmarkes: II. Die Geffase der Ruckenmarksoberflache. Sitzungsber d k Acad d Wissensch. Wien Math-Naturwiss Ll. 1882;85:101–30.

    Google Scholar 

  36. Koshino T, Murakami G, Morishita K, Mawatari T, Abe T. Does the Adamkiewicz artery originate from the larger segmental arteries? J Thorac Cardiovasc Surg. 1999;117:898–905.

    Article  PubMed  CAS  Google Scholar 

  37. Tanaka H, Ogino H, Minatoya K, Matsui Y, Higami T, Okabayashi H, et al. The impact of preoperative identification of the Adamkiewicz artery on descending and thoracoabdominal aortic repair. J Thorac Cardiovasc Surg. 2016;151:122–8.

    Article  PubMed  Google Scholar 

  38. Melissano G, Bertoglio L, Civelli V, Amato AC, Coppi G, Civilini E, et al. Demonstration of the Adamkiewicz artery by multidetector computed tomography angiography analysed with the open-source software OsiriX. Eur J Vasc Endovasc Surg. 2009;37:395–400.

    Article  PubMed  CAS  Google Scholar 

  39. Guzinski M, Bryl M, Zieminska K, Wolny K, Sasiadek M, Garcarek JS. Detection of the Adamkiewicz artery in computed tomography of the thorax and abdomen. Advances in clinical and experimental medicine: official organ. Wroclaw Med Univ. 2017;26:31–7.

    Google Scholar 

  40. Amato ACM, Parga Filho JR, Stolf NAG. Influential factors on the evaluation of adamkiewicz artery using a 320-detector row computed tomography device. Ann Vasc Surg. 2017;44:136–45.

    Article  PubMed  Google Scholar 

  41. Wynn M, Acher C, Marks E, Acher CW. The effect of intercostal artery reimplantation on spinal cord injury in thoracoabdominal aortic aneurysm surgery. J Vasc Surg. 2016;64:289–96.

    Article  PubMed  Google Scholar 

  42. Safi HJ, Miller CC 3rd, Carr C, Iliopoulos DC, Dorsay DA, Baldwin JC. Importance of intercostal artery reattachment during thoracoabdominal aortic aneurysm repair. J Vasc Surg. 1998;27:58–66.

    Article  PubMed  CAS  Google Scholar 

  43. Afifi RO, Sandhu HK, Zaidi ST, Trinh EK, Tanaka A, Miller CC 3rd, et al. Intercostal artery management in thoracoabdominal aortic surgery: to reattach or not to reattach? J Thorac Cardiovasc Surg. 2018;155(4):1372–8.e1. https://doi.org/10.1016/j.jtcvs.2017.11.072.

    Article  PubMed  Google Scholar 

  44. LeMaire SA, Ochoa LN, Conklin LD, Widman RA, Clubb FJ Jr, Undar A, et al. Transcutaneous near-infrared spectroscopy for detection of regional spinal ischemia during intercostal artery ligation: preliminary experimental results. J Thorac Cardiovasc Surg. 2006;132:1150–5.

    Article  PubMed  Google Scholar 

  45. Badner NH, Nicolaou G, Clarke CF, Forbes TL. Use of spinal near-infrared spectroscopy for monitoring spinal cord perfusion during endovascular thoracic aortic repairs. J Cardiothorac Vasc Anesth. 2011;25:316–9.

    Article  PubMed  Google Scholar 

  46. Boezeman RP, van Dongen EP, Morshuis WJ, Sonker U, Boezeman EH, Waanders FG, et al. Spinal near-infrared spectroscopy measurements during and after thoracoabdominal aortic aneurysm repair: a pilot study. Ann Thorac Surg. 2015;99:1267–74.

    Article  PubMed  Google Scholar 

  47. Luehr M, von Aspern K, Etz CD. Limitations of direct regional spinal cord monitoring using near-infrared spectroscopy: indirect paraspinal collateral network surveillance is the answer! Ann Thorac Surg. 2016;101:1238–9.

    Article  PubMed  Google Scholar 

  48. Laschinger JC, Cunningham JN Jr, Cooper MM, Krieger K, Nathan IM, Spencer FC. Prevention of ischemic spinal cord injury following aortic cross-clamping: use of corticosteroids. Ann Thorac Surg. 1984;38:500–7.

    Article  PubMed  CAS  Google Scholar 

  49. Kanellopoulos GK, Kato H, Wu Y, Dougenis D, Mackey M, Hsu CY, Kouchoukos NT. Neuronal cell death in the ischemic spinal cord: the effect of methylprednisolone. Ann Thorac Surg. 1997;64:1279–85.

    Article  PubMed  CAS  Google Scholar 

  50. Acher CW, Wynn MM, Hoch JR, Popic P, Archibald J, Turnipseed WE. Combined use of cerebral spinal fluid drainage and naloxone reduces the risk of paraplegia in thoracoabdominal aneurysm repair. J Vasc Surg. 1994;19:236–49.

    Article  PubMed  CAS  Google Scholar 

  51. Kunihara T, Matsuzaki K, Shiiya N, Saijo Y, Yasuda K. Naloxone lowers cerebrospinal fluid levels of excitatory amino acids after thoracoabdominal aortic surgery. J Vasc Surg. 2004;40:681–90.

    Article  PubMed  Google Scholar 

  52. Obrenovitch TP, Richards DA. Extracellular neurotransmitter changes in cerebral ischaemia. Cerebrovasc Brain Metab Rev. 1995;7:1–54.

    PubMed  CAS  Google Scholar 

  53. Svensson LG, Stewart RW, Cosgrove DM, Lytle BW, Beven EG, Furlan AJ, et al. Preliminary results and rationale for the use of intrathecal papaverine for the prevention of paraplegia after aortic surgery. S Afr J Surg. 1988;26:153–60.

    PubMed  CAS  Google Scholar 

  54. Lima B, Nowicki ER, Blackstone EH, Williams SJ, Roselli EE, Sabik JF. 3rd, et al. Spinal cord protective strategies during descending and thoracoabdominal aortic aneurysm repair in the modern era: the role of intrathecal papaverine. J Thorac Cardiovasc Surg. 2012;143:945–52.

    Article  PubMed  CAS  Google Scholar 

  55. Okita Y. Surgery for thoracic aortic disease in Japan: evolving strategies toward the growing enemies. Gen Thorac Cardiovasc Surg. 2015;63:185–96.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony L. Estrera.

Ethics declarations

Conflict of interest

Dr. Estrera is consultant for WL Gore. The other authors have no disclosures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, A., Safi, H.J. & Estrera, A.L. Current strategies of spinal cord protection during thoracoabdominal aortic surgery. Gen Thorac Cardiovasc Surg 66, 307–314 (2018). https://doi.org/10.1007/s11748-018-0906-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-018-0906-1

Keywords

Navigation